

Recent Advances in Machine learning on Graphs

Chanyoung Park

Department of Industrial & Systems Engineering KAIST cy.park@kaist.ac.kr

GRAPH (NETWORK)

• A general description of data and their relations

VARIOUS REAL-WORLD GRAPHS (NETWORKS)

Social graph

Molecular graph

(Figure credit) Web

Internet-of-Things

Gene network

Transportation

Web graph

3

MACHINE LEARNING ON GRAPHS

Classical ML tasks in graphs:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Link Prediction (Friend Recommendation)

TRADITIONAL GRAPH REPRESENTATION

A B C D E F G H I 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0</t

Problems

- Suffer from data sparsity
- Suffer from high dimensionality
- High complexity for computation
- Does not represent "semantics"

• ...

Adjacency matrix

How to effectively and efficiently represent graphs is the key!

 \rightarrow Deep learning-based approach?

CHALLENGES OF GRAPH REPRESENTATION LEARNING

- Existing deep neural networks are designed for data with regular-structure (grid or sequence)
 - CNNs for fixed-size images/grids ...

• RNNs for text/sequences ...

Graphs are very complex

- Arbitrary structures (no spatial locality like grids / no fixed orderings)
- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
- Large-scale: More than millions of nodes and billions of edges

THIS TALK

- How to learn graph representation in various types of graphs?
 - Homogeneous Network Embedding
 - Attributed Network Embedding
 - Multi-aspect Network Embedding
 - Heterogeneous Network Embedding
- How to effectively train GNNs?
 - Self-supervised learning
 - Going deeper with GNN
- What is not covered in this talk?
 - Dynamic graph
 - Expressiveness of GNN (e.g., isomorphism)
 - Robustness of GNN (i.e., adversarial attack)
 - Graph-level operations (i.e., graph pooling)

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding
- Training GNN
 - Self-supervised learning
 - Going deeper with GNN
- Applications of Graph Machine Learning

OUTLINE

Homogeneous Network Embedding

- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding
- Training GNN
 - Self-supervised learning
 - Going deeper with GNN
- Applications of Graph Machine Learning

HOMOGENEOUS NETWORK

A graph with a single type of node and a single type of edge

(Figure credit) https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16

https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png

https://commons.wikimedia.org/wiki/File:Word co-occurrence network (range 3 words) - ENG.jpg

sunris

BHA

usua

light

pur/c

PROBLEM DEFINITION: NODE EMBEDDING

Formal definition

- **<u>Given</u>**: A graph G = (V, E, W),
 - V is the set of nodes
 - *E* is the set of edges between the nodes
 - *W* is the set of weights of the edges,
- **Goal:** To represent each node *i* with a vector, which preserves the structure of networks.
- Idea: Similar nodes in a graph have similar vector representations

DEEPWALK

- Deepwalk converts a graph into a collection of node sequences through random walk
- Treat random walks on networks as sentences
- Distributional hypothesis
 - Word embedding: Words in similar contexts have similar meanings (e.g., skip-gram in word embedding)
 - Node embedding: Nodes in similar structural contexts are similar

NODE2VEC

- Idea: Find the node context with a hybrid strategy of
 - Breadth-first Sampling (BFS): Structural equivalence
 - Depth-first Sampling (DFS): Homophily

- Biased random walk with two parameters p and q
 - *p*: controls the probability of **revisiting** a node in the walk
 - *q*: controls the probability of **exploring** "outward" nodes
- Find optimal p and q through cross-validation on labeled data
- Interpolate between BFS and DFS

NODE2VEC: CASE STUDY

- p = 1, q = 2 \rightarrow BFS-like behavior
 - Discovers structure roles

$$\alpha_{pq}(t,x) = \begin{cases} 1 & if \ d_{tx} = 0\\ 1 & if \ d_{tx} = 1\\ 0.5 & if \ d_{tx} = 2 \end{cases}$$

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & if \ d_{tx} = 0\\ 1 & if \ d_{tx} = 1\\ \frac{1}{q} & if \ d_{tx} = 2 \end{cases}$$

• p = 1, q = 0.5 \rightarrow DFS-like behavior

• Discovers clusters/communities

$$\alpha_{pq}(t,x) = \begin{cases} 1 & if \ d_{tx} = 0 \\ 1 & if \ d_{tx} = 1 \\ 2 & if \ d_{tx} = 2 \end{cases}$$

LINE: LARGE-SCALE INFORMATION NETWORK EMBEDDING

- Idea: To preserve the first-order and second-order proximity
- Deepwalk: DFS
- Node2vec: DFS + BFS
- LINE: BFS

First-order Proximity

Second-order Proximity

Proximity between the neighborhood structures of the nodes

LINE: Large-scale Information Network Embedding, WWW2015

The local pairwise proximity between the nodes

However, many links between the nodes are not observed
Not sufficient for preserving the entire network structure

PRESERVING THE PROXIMITY

First-order Proximity

Model distribution of first-order proximity:

$$O_1 = KL(\hat{p}_1, p_1) = -\sum_{(i,j)\in E} w_{ij} \log p_1(v_i, v_j)$$

Objective

Objective

Second-order Proximity

Empirical distribution of neighborhood structure:

Model distribution of neighborhood structure:

$$\hat{p}_{2}(v_{j} | v_{i}) = \frac{w_{ij}}{\sum_{k \in V} w_{ik}}$$

$$p_{2}(v_{j} | v_{i}) = \frac{\exp(\vec{u}'_{i}^{T} \vec{u}_{j})}{\sum \exp(\vec{u}'_{k}^{T} \vec{u}_{i})}$$

 $k \in V$

$$= \sum_{i} KL(\hat{p}_{2}(\cdot | v_{i}), p_{2}(\cdot | v_{i}))$$
$$= -\sum_{i} W_{ij} \log p_{2}(v_{j} | v_{i})$$

LINE: Large-scale Information Network Embedding, WWW2015

 $(i,j) \in E$

 O_{γ}

SDNE - STRUCTURAL DEEP NETWORK EMBEDDING

Idea: Shallow models cannot capture the highly non-linear network structure

• Deepwalk, node2vec, LINE are all shallow models

GRAREP

Idea: Consider k-hop node neighbors

- Red: Target node
 - Green: 1-hop neighbors
 - A (i.e., adjacency matrix)
- Blue: 2-hop neighbors
 - A²
- Purple: 3-hop neighbors
 - A³

 $\mathcal{L}_{k} = \sum \|\mathbf{z}_{u}^{k\top}\mathbf{z}_{v}^{k} - \mathbf{A}_{u,v}^{k}\|^{2}$ $(u,v) \in V \times V$

Concatenate all the k-step representations $[Z^1, Z^2, ..., Z^K]$

DEEP RECURSIVE NETWORK EMBEDDING WITH REGULAR EQUIVALENCE

Idea: To preserve regular equivalence

• Example of regular equivalence (node 7 and node 8 are regularly equivalent)

- Approach: The definition of regular equivalence is recursive
 - If two nodes are regularly equivalent, then their neighbors are also regularly equivalent
 - Solution: Represent embedding of one node by the aggregation of its neighbors' embeddings.

$$\mathcal{L}_1 = \sum_{v \in V} ||\mathbf{X}_v - Agg(\{\mathbf{X}_u | u \in \mathcal{N}(v)\})||_F^2,$$

DEEP RECURSIVE NETWORK EMBEDDING WITH REGULAR EQUIVALENCE

• How to design the aggregation function? LSTM! (Variable size of neighbors)

$$\mathcal{L}_1 = \sum_{v \in V} ||\mathbf{X}_v - Agg(\{\mathbf{X}_u | u \in \mathcal{N}(v)\})||_F^2,$$

Regularization

- The model may degenerate to the trivial solution with all the embeddings being 0.
- How can we avoid the trivial solution?
- Use node degree as the weakly guided information
 - The learned embedding of a node should be able to approximate the degree of the node

$$\mathcal{L}_{reg} = \sum_{\upsilon \in V} \|\log(d_{\upsilon} + 1) - MLP(Agg(\{\mathbf{X}_u | u \in \mathcal{N}(\upsilon)\}))\|_F^2,$$

 $\mathcal{L} = \mathcal{L}_1 + \lambda \mathcal{L}_{reg}$

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding
- Training GNN
 - Self-supervised learning
 - Going deeper with GNN
- Applications of Graph Machine Learning

How to differentiate among multiple aspects?

POLYDW

- Define the aspect (sense) of each node by clustering the adjacency matrix (offline clustering)
- For each node and its context nodes, sample an aspect
- Update the node embeddings of the sampled aspect only

ASP2VEC

Adopt the Gumbel-softmax trick to dynamically sample aspects based on the context

• PolyDW: Offline clustering

SPLITTER

- Given an original graph, compute a persona graph
 - Add constraints on Deepwalk to relate the persona graph with the original graph

Is a single embedding enough? learning node representations that capture multiple social contexts, WWW2019

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding
- Training GNN
 - Self-supervised learning
 - Going deeper with GNN
- Applications of Graph Machine Learning

ATTRIBUTED NETWORK: EXAMPLE OF NODE ATTRIBUTES

- Any type of information that is related to a node within a graph
- Example
 - User content in social graph
 - Reviews in e-commerce graph
 - Paper abstracts in citation graph
 - Product image in e commerce graph
 - ...

Top reviews from the United States

Ralph E.

★公会会会 Do not recommend....VERY short life! Reviewed in the United States on September 16, 2017 Verified Purchase

I was very pleased with the quality of the product as I received it. But after about one week of charging it became intermittent for a couple of days and then stopped working. I think it is important to point out that this cord is in one location, I sit my phone on a table surface and let it charge all night. So no moving, no using it while connected or such. I also an not the type of person that unplugs it by pulling on the cored or such. This just proved to me that they cord was either defective as received or poor quality (or maybe a combo of both). Now it is much cheaper than an APPLE cord, but I would expect more. Wish it would have done better....I had I hopes being an Amazon product!

392 people found this helpful

Unsupervised Differentiable Multi-aspect Network Embedding

Chanyoung Park¹, Carl Yang², Qi Zhu¹, Donghyun Kim⁴, Hwanjo Yu³*, Jiawei Han¹ ¹Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA ²Emory University, GA, USA, ³POSTECH, Pohang, South Korea, ⁴Yahoo! Research, CA, USA {pcy1302,qiz3,hanjj@illinois.edu.j.carlyang@emory.edu,donghyun.kim@verizonmedia.com,hwanjoyu@postech.ac.kr

ABSTRACT

Network embedding is an influential graph mining technique for representing nodes in a graph as distributed vectors. However, the majority of network embedding methods focus on learning a single vector representation for each node, which has been recently criticized for not being capable of modeling multiple aspects of a node. To capture the multiple aspects of each node, existing studies mainly rely on offline graph clustering performed prior to the actual embedding, which results in the cluster membership of each node (i.e., node aspect distribution) fixed throughout training of the embedding model. We argue that this not only makes each node always have the same aspect distribution regardless of its dynamic context, but also hinders the end-to-end training of the model that eventually leads to the final embedding quality largely dependent on the clustering. In this paper, we propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec, in which the aspects of each node are dynamically assigned based on its local context. More precisely, among multiple aspects, we dynamically assign a single aspect to each node based on its current context, and our aspect selection module is end-to-end differentiable via the Gumbel-Softmax trick. We also introduce the aspect regularization framework to capture the interactions among the multiple aspects in terms of relatedness and diversity. We further demonstrate that our proposed framework can be readily extended to heterogeneous networks. Extensive experiments towards various

Figure 1: a) Clustering-based aspect assignment that fixes the aspect distribution during the embedding learning b) asp2vec dynamically selects a single aspect based on the local context nodes.

1 INTRODUCTION

Networks constitute a natural paradigm to represent real-world relational data that contain various relationships between entities ranging from online social network of users, and academic publication network of authors, to protein-protein interaction (PPI) network in the physical world. Due to the pervasive nature of networks, analyzing and mining useful knowledge from networks has been an actively researched topic for the past decades. Among various tools for network analysis, network embedding, which learns continuous vector representations for nodes in a network, has re-

Helpful

CHALLENGE IN ATTRIBUTED NETWORK EMBEDDING

Node attributes and network influence each other and are inherently correlated

- Ex. High correlation of user posts and friend relationships
- How to jointly model two different modalities: graph topology + node attributes
- Highly complex (large scale)
 - Number of nodes and dimension of attributes could be large

DEEP ATTRIBUTED NETWORK EMBEDDING (DANE)

 Idea: The proximity in an attributed network depends on not only the topological structure but also the attribute

$$L = L_f + L_h + L_c + L_s$$

- The topological structure and attributes are the <u>two modal</u> <u>information of the same network</u>
 - → Learned representations should be consistent and complementary

Deep Attributed Network Embedding, IJCAI2018

SEMI-SUPERVISED/SUPERVISED GRAPH REPRESENTATION LEARNING

- So far, we have looked at **unsupervised** graph representation learning methods
 - Mainly focused on preserving the proximity or graph structure
- What about when we are given some supervised tasks?
 - E.g., node classification
- Goal: Learning node representations for specific tasks considering node label and attribute information

PLANETOID

• Idea: Random walk based on graph structure and labels (An extension of Deepwalk)

$$-\frac{1}{L}\sum_{i=1}^{L}\log p(y_i|\mathbf{x}_i,\mathbf{e}_i) - \lambda \mathbb{E}_{(i,c,\gamma)}\log \sigma(\gamma \mathbf{w}_c^T \mathbf{e}_i),$$

Supervised part

Deepwalk

$$p(y|\mathbf{x}, \mathbf{e}) = \frac{\exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{e})^T]\mathbf{w}_y}{\sum_{y'} \exp[\mathbf{h}^k(\mathbf{x})^T, \mathbf{h}^l(\mathbf{e})^T]\mathbf{w}_{y'}},$$

Revisiting Semi-Supervised Learning with Graph Embeddings, ICML2016

BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGES

- Convolutional filters
 - Local feature detectors
 - A feature is learned in each local receptive field by a convolutional filter

LOCAL RECEPTIVE FIELD ON GRAPHS

- How should we define local receptive fields on graphs?
 - Local subgraphs
- However, there are no orders between the neighbors
 - In images, the neighbors of a node can follow specific order

GRAPH CONVOLUTIONAL NETWORK (GCN)

- Node features: $X \in \mathbb{R}^{n \times F}$
- Adjacency matrix: $A \in \mathbb{R}^{n \times n}$
- Add self link: $ilde{A} = A + I_N$
- Degree matrix: $ilde{D}_{ii} = \sum_j ilde{A}_{ij}$
- Weight matrix at layer $l: W^{(l)} \in \mathbb{R}^{F \times d}$

GRAPH SAMPLE AND AGGREGATE (GRAPHSAGE)

- Motivation: Can we train GCN more efficiently?
- Idea: Sample neighbors

- Variants of AGG
 - Mean:

Pool

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

- Transform neighbor vectors and apply symmetric vector function. $AGG = \bigcap (\{\mathbf{Qh}_{u}^{k-1}, \forall u \in N(v)\})$
- LSTM:
 - Apply LSTM to random permutation of neighbors. $AGG = LSTM ([\mathbf{h}_{u}^{k-1}, \forall u \in \pi(N(v))])$

Inductive Representation Learning on Large Graphs, NeurIPS2017

(Figure credit) Slide snipping from "Hamiltion & Tang, AAAI 2019 Tutorial on Graph Representation Learning"

SGCN

- Motivation: Can we train GCN more efficiently?
- Idea: Remove unnecessary complexity and redundant computation (non-linearity and weight matrices)

SGCN

GRAPH ATTENTION NETWORKS (GAT)

Idea: We assign higher weights to more important nodes

f(y)

f(y) = 0

f(v) = v

y

f(y)

f(y) = ay

f(y) = y

v

BACKGROUND: MUTUAL INFORMATION (MI)

- Measures the amount of information that two variables share
- If X and Y are independent, then $P_{XY} = P_X P_Y \rightarrow$ in this case, MI = 0

$$(X;Y) = \mathbb{E}_{P_{XY}} \left[\log \frac{P_{XY}}{P_X P_Y} \right]$$
$$= D_{KL} (P_{XY} || P_X P_Y)$$

- High MI? \rightarrow One variable is always indicative of the other variable
- Recently, scalable estimation of mutual information was made both possible and practical through Mutual Information Neural Estimation (MINE)

BACKGROUND: DEEP INFOMAX

- Unsupervised representation learning method for image data
- Idea: Maximize mutual information (MI) between local patches and the global representation of an image

Learning deep representations by mutual information estimation and maximization, ICLR2019

DEEP GRAPH INFOMAX

Maximizes the mutual information between the local patches (h_i) and the graph-level global representation (s)

HIGH-ORDER DEEP GRAPH INFOMAX

Idea: High-order Mutual Information

• We should not only consider the extrinsic supervision signal, i.e., $s \leftrightarrow h$, but also intrinsic signal, i.e., $f \leftrightarrow h$

I(X;Y) = H(X) + H(Y) - H(X,Y)DGI $I(X_1; X_2; X_3) = H(X_1) + H(X_2) + H(X_3)$ $-H(X_1, X_2) - H(X_1, X_3) - H(X_2, X_3)$ $+H(X_1, X_2, X_3)$ $=H(X_1) + H(X_2) - H(X_1, X_2)$ $+H(X_1) + H(X_3) - H(X_1, X_3)$ $-H(X_1) - H(X_2, X_3) + H(X_1, X_2, X_3)$ $=I(X_1;X_2) + I(X_1;X_3) - I(X_1;X_2,X_3)$

HDMI: High-order Deep Multiplex Infomax, WWW2021

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding
- Training GNN
 - Self-supervised learning
 - Going deeper with GNN
- Applications of Graph Machine Learning

HETEROGENEOUS NETWORK (HETNET)

- So far, we have look at graphs with a single type of node and a single type of edges
- However, in reality a lot of graphs have **multiple types of nodes** and **multiple types of edges**
- Such networks are called "heterogeneous network"

How do we embed nodes in a heterogeneous network?

METAPATH2VEC: SCALABLE REPRESENTATION LEARNING FOR HETEROGENEOUS NETWORKS

• Motivation: Deepwalk assumes that each node has a single type → Extend Deepwalk to HetNet!

HIN2VEC

- Motivation: Do we need predefined metapaths?
- Idea: Learn latent vectors of both nodes and the targeted relationships

$$O_{x,y,r}(x,y,r) = \begin{cases} P(r|x,y), & \text{if } L(x,y,r) = 1\\ 1 - P(r|x,y), & \text{if } L(x,y,r) = 0 \end{cases}$$

 $\log O_{x,y,r}(x,y,r) = L(x,y,r) \log P(r|x,y) + [1 - L(x,y,r)] \log [1 - P(r|x,y)]$

$$P(r|x,y) = sigmoid\left(\sum W'_X \vec{x} \odot W'_Y \vec{y} \odot f_{01}(W'_R \vec{r})\right)$$

$$O \propto \log O = \sum_{x,y,r \in D} \log O_{x,y,r}(x,y,r)$$

View 1

View 2

View 3

MULTI-LAYER (MULTIPLEX) NETWORK

- A type of heterogeneous network
 - A single node type, multiple edge types
- Example 1: Social network
 - Relationship between users
- Example 2: E-commerce
 - Relationship between items
- Example 3: Publication network
 - Relationship between papers (Citation, share authors)
 - Relationship between authors (Co-author, co-citation)

Example 4: Movie database

- Relationship between movies
 - Common director, common actor

Example 5: Transportation network in a city

- Relation between locations in a city
 - Bus, train, car, taxi

AN ATTENTION-BASED COLLABORATION FRAMEWORK FOR MULTI-VIEW NETWORK REPRESENTATION LEARNING

• Idea: Promote the collaboration of different views and let them vote for the robust representations.

$$O_{collab} = \sum_{k=1}^{K} O_k + \eta R,$$

R-GCN: RELATIONAL GCN

• Nodes are entities, the edges are relations labeled with their types

Modeling Relational Data with Graph Convolutional Networks, ESWC2018

HAN: HETEROGENEOUS GRAPH ATTENTION NETWORK

• Idea: Apply graph attention networks to each network and then aggregate through attention

Heterogeneous Graph Attention Network, WWW2019

Idea: Adopt infomax principal to multiplex network

DGI

TASK-GUIDED METHODS

- Instead of learning general node embeddings, what about we focus on a specific task?
- Example: Author Identification
 - Predict the true authors of an anonymized paper given
 - Paper abstract
 - Venue (e.g., KDD, ICDM)
 - References
- Can we predict the true authors?

HETNETE

- Step 1: Combine keywords, venue and references related to a paper to obtain the paper embedding
- Step 2: Perform metapath2vec using embeddings learned in step 1

TAPEM

Idea: Let's generate pair embeddings

TAPEM

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding
- Training GNN
 - Self-supervised learning
 - Going deeper with GNN
- Applications of Graph Machine Learning

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding

Training GNN

- Self-supervised learning
- Going deeper with GNN
- Applications of Graph Machine Learning

WHAT IS SELF-SUPERVISED LEARNING?

- A form of unsupervised learning where the data provides the supervision
- In general, withhold some part of the data, and task the network with predicting it
- An example of pretext task: Relative positioning
 - Train network to predict relative position of two regions in the same image

WHAT IS SELF-SUPERVISED LEARNING?

Pretext task: Jigsaw puzzle

(c) Solved

Pretext task : Colorization

Pretext task : Rotation

• Which one has the correct rotation?

(Figure credit) Self-Supervised Learning, Andrew Zisserman

EXAMPLES OF PRETEXT TASKS ON GRAPHS

CONTEXT PREDICTION

Pretext task: Context prediction

	Chemistry			Biology		
	Non-pre-trained	Pre-trained	Gain	Non-pre-trained	Pre-trained	Gain
GIN	67.0	74.2	+7.2	64.8 ± 1.0	$\textbf{74.2} \pm \textbf{1.5}$	+9.4
GCN	68.9	72.2	+3.4	63.2 ± 1.0	70.9 ± 1.7	+7.7
GraphSAGE	68.3	70.3	+2.0	65.7 ± 1.2	68.5 ± 1.5	+2.8
GAT	66.8	60.3	-6.5	68.2 ± 1.1	67.8 ± 3.6	-0.4

CONTRASTIVE LEARNING

- Given: $X = \{x, x^+, x_1^-, ..., x_{N-1}^-\}$; Similarity function $s(\cdot)$ (e.g., cosine similarity) • Goal: $s(f(x), f(x^+)) > s(f(x), f(x^-))$
- Contrastive/InfoNCE Loss

$$\mathcal{L}_{N} = -\mathbb{E}_{\mathcal{X}}\left[\log\frac{\exp\left(s\left(f(x), f(x^{+})\right)\right)}{\exp\left(s\left(f(x), f(x^{+})\right)\right) + \sum_{j=1}^{N-1} \exp\left(s\left(f(x), f\left(x_{j}^{-}\right)\right)\right)}\right]$$

CONTRASTIVE MULTI-VIEW REPRESENTATION LEARNING ON GRAPHS

- Idea: Contrast encodings from first-order neighbors and a general graph diffusion
 - Maximize MI between node representations of one view and graph representation of another view and vice versa

GCC: GRAPH CONTRASTIVE CODING FOR GRAPH NEURAL NETWORK PRE-TRAINING

Idea: Subgraph instance discrimination in and across networks

$$\mathcal{L} = -\log \frac{\exp\left(\boldsymbol{q}^{\top}\boldsymbol{k}_{+}/\tau\right)}{\sum_{i=0}^{K}\exp\left(\boldsymbol{q}^{\top}\boldsymbol{k}_{i}/\tau\right)}$$

- Query instance x^q
- Key instances $\{x^{k_0}, x^{k_1}, x^{k_2}\}$
- Embedding
 - q (embedding of x^q)
 - i.e., $q = f(x^q)$
 - *k*₀, *k*₁, *k*₂ (embedding of {*x*^{k0}, *x*^{k1}, *x*^{k2}})
 i.e., *k_i* = *f*(*x*^{ki})

GPT-GNN

- Factorize the graph likelihood: $p(G; \theta) = p(X, E; \theta) = p(X; \theta)p(E; \theta)$
 - Attribute generation $p(X; \theta)$ / Edge generation $p(E; \theta)$
- Autoregressive generative process of an attributed graph

$$\sum_{i=1}^{|V|} \log p_{\theta}(X_{i}) \leq \dots \leq p_{\theta}(E_{i}|X_{
This ignores the dependency between attributes (X) and edges (E)

$$\sum_{i=1}^{|V|} \sum_{i=1}^{|V|} \sum_{i=1}^{|V|} p_{\theta}(X_{i}, E_{i}, \neg o \mid E_{i}, o, X_{
(I) Given the observed edges, generate node attributes
2) Given the observed edges and generated node attributes, generate the remaining edges
Now we can consider the dependency between edges and attributes
(X) generate attributes
(X) and edges (E)
(X) and e$$$$

 $\log p_{\theta}(X, E) = \sum \log p_{\theta}(X_i, E_i \mid X_{\leq i}, E_{\leq i})$

GCC VS. GPT-GNN : TWO DIFFERENT SETTINGS

- To pre-train from **some graphs**
- To fine-tune for unseen tasks on unseen graphs

GPT-GNN

- To pre-train from **one graph**
- To fine-tune for unseen tasks on the same graph or graphs of the same domain

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding

Training GNN

- Self-supervised learning
- Going deeper with GNN
- Applications of Graph Machine Learning

WHY DEEP GNNS?

Lager receptive field (more global view)

Larger model capacity

WHAT HAPPENS WHEN GCN GOES DEEP?

• The performance drops as we go deeper

WHAT IS GOING ON?

- Challenge: Over-smoothing
- Repeated graph convolutions eventually make node embeddings indistinguishable

Figure 2: Vertex embeddings of Zachary's karate club network with GCNs with 1,2,3,4,5 layers.

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI2018

WHY OVER-SMOOTHING?

• Multiple propagation makes representation inseparable!

Theorem. In a connected graph, given a propagation matrix P and node features $x \in \mathbb{R}^{F}$, we have

 $\lim_{k\to\infty}P^kx\propto u_1,$

where u_1 is the eigenvector of P corresponds to its largest eigenvalue.

(1) When
$$P = D^{-1}A$$
, u_1 is **1**
(2) When $P = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$, u_1 is $D^{-\frac{1}{2}}$ **1**

PAIRNORM

Idea: Normalization layer for GNNs

• The total pairwise squared distances (TPSD) remains a constant across layers

$$\begin{aligned} \text{TPSD}(\tilde{\mathbf{X}}) &= \sum_{i,j \in [n]} \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2^2 = \sum_{i,j \in [n]} (\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j)^T (\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j) \\ &= \sum_{i,j \in [n]} (\tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}}_i + \tilde{\mathbf{x}}_j^T \tilde{\mathbf{x}}_j - 2 \tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}}_j) \\ &= 2n \sum_{i \in [n]} \tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}}_i - 2 \sum_{i,j \in [n]} \tilde{\mathbf{x}}_i^T \tilde{\mathbf{x}}_j \\ &= 2n \sum_{i \in [n]} \|\tilde{\mathbf{x}}_i\|_2^2 - 2\mathbf{1}^T \tilde{\mathbf{X}} \tilde{\mathbf{X}}^T \mathbf{1} \\ &= 2n \sum_{i \in [n]} \|\tilde{\mathbf{x}}_i\|_2^2 - 2 \|\mathbf{1}^T \tilde{\mathbf{X}} \|_2^2 \\ &= 2n^2 \left(\frac{1}{n} \sum_{i=1}^n \|\tilde{\mathbf{x}}_i\|_2^2 - \|\frac{1}{n} \sum_{i=1}^n \tilde{\mathbf{x}}_i\|_2^2 \right) . \end{aligned}$$

Step1: Compute centered representation (This does not affect TPSD)

$$\begin{split} \tilde{\mathbf{x}}_{i}^{c} &= \tilde{\mathbf{x}}_{i} - \frac{1}{n} \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i}^{c} \\ \| \frac{1}{n} \sum_{i=1}^{n} \tilde{\mathbf{x}}_{i} \|_{2}^{2} \to \mathbf{0} \\ \text{TPSD}(\tilde{\mathbf{X}}) &= \text{TPSD}(\tilde{\mathbf{X}}^{c}) = 2n \| \tilde{\mathbf{X}}^{c} \|_{F}^{2} \end{split}$$

Step2: Scale the centered representation

$$\begin{aligned} \dot{\mathbf{x}}_{i} &= s \cdot \frac{\tilde{\mathbf{x}}_{i}^{c}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} \|\tilde{\mathbf{x}}_{i}^{c}\|_{2}^{2}}} = s\sqrt{n} \cdot \frac{\tilde{\mathbf{x}}_{i}^{c}}{\sqrt{\|\tilde{\mathbf{X}}^{c}\|_{F}^{2}}} \\ \\ \Pi PSD(\dot{\mathbf{X}}) &= 2n \|\dot{\mathbf{X}}\|_{F}^{2} = 2n \sum_{i} \|s \cdot \frac{\tilde{\mathbf{x}}_{i}^{c}}{\sqrt{\frac{1}{n} \sum_{i} \|\tilde{\mathbf{x}}_{i}^{c}\|_{2}^{2}}} \|_{2}^{2} = 2n \frac{s^{2}}{\frac{1}{n} \sum_{i} \|\tilde{\mathbf{x}}_{i}^{c}\|_{2}^{2}} \sum_{i} \|\tilde{\mathbf{x}}_{i}^{c}\|_{2}^{2} = 2n^{2}s^{2} \end{aligned}$$

Idea: Randomly remove a certain number of edges from the input graph at each training epoch

		2 layers		8 layers		32 layers	
Dataset	Backbone	Orignal	DropEdge	Orignal	DropEdge	Orignal	DropEdge
Cora	GCN	86.10	86.50	78.70	85.80	71.60	74.60
	ResGCN	-	-	85.40	86.90	85.10	86.80
	JKNet	-	-	86.70	87.80	87.10	87.60
	IncepGCN	-	-	86.70	88.20	87.40	87.70
	GraphSAGE	87.80	88.10	84.30	87.10	31.90	32.20
Citeseer	GCN	75.90	78.70	74.60	77.20	59.20	61.40
	ResGCN	-	-	77.80	78.80	74.40	77.90
	JKNet	-	-	79.20	80.20	71.70	80.00
	IncepGCN	-	-	79.60	80.50	72.60	80.30
	GraphSAGE	78.40	80.00	74.10	77.10	37.00	53.60
Pubmed	GCN	90.20	91.20	90.10	90.90	84.60	86.20
	ResGCN	-	-	89.60	90.50	90.20	91.10
	JKNet	-	-	90.60	91.20	89.20	91.30
	IncepGCN	-	-	90.20	91.50	OOM	90.50
	GraphSAGE	90.10	90.70	90.20	91.70	41.30	47.90
Reddit	GCN	96.11	96.13	96.17	96.48	45.55	50.51
	ResGCN	-	-	96.37	96.46	93.93	94.27
	JKNet	-	-	96.82	97.02	OOM	OOM
	IncepGCN	-	-	96.43	96.87	OOM	OOM
	GraphSAGE	96.22	96.28	96.38	96.42	96.43	96.47

Table 1: Testing accuracy (%) comparisons on different backbones w and w/o DropEdge.

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification, ICLR2020

GCN II

Idea: Initial residual and Identity mapping

$$\begin{aligned} \mathbf{GCN} \quad \mathbf{H}^{(\ell+1)} &= \sigma \left(\tilde{\mathbf{P}} \mathbf{H}^{(\ell)} \mathbf{W}^{(\ell)} \right) \quad \tilde{\mathbf{P}} &= \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \end{aligned}$$
$$\begin{aligned} \mathbf{GCN} \quad \mathbf{H} \quad \mathbf{H}^{(\ell+1)} &= \sigma \left(\left((1 - \alpha_{\ell}) \tilde{\mathbf{P}} \mathbf{H}^{(\ell)} + \alpha_{\ell} \mathbf{H}^{(0)} \right) \left((1 - \beta_{\ell}) \mathbf{I}_{n} + \beta_{\ell} \mathbf{W}^{(\ell)} \right) \right) \end{aligned}$$

Add residual connection Maintain a portion of information from the initial input

The weights are s norms

Method	Cora	Citeseer	Pubmed
GCN	81.5	71.1	79.0
GAT	83.1	70.8	78.5
APPNP	83.3	71.8	80.1
JKNet	81.1 (4)	69.8 (16)	78.1 (32)
JKNet(Drop)	83.3 (4)	72.6 (16)	79.2 (32)
Incep(Drop)	83.5 (64)	72.7 (4)	79.5 (4)
GCNII GCNII*	85.5 ± 0.5 (64) 85.3 ± 0.2 (64)	$\begin{array}{c} \textbf{73.4} \pm \textbf{0.6} \ (32) \\ \textbf{73.2} \pm \textbf{0.8} \ (32) \end{array}$	$\begin{array}{c} 80.2 \pm 0.4 \ (16) \\ \textbf{80.3} \pm \textbf{0.4} \ (16) \end{array}$

Simple and Deep Graph Convolutional Networks, ICML2020

APPNP

- Idea: Incorporate the personalize page rank to capture the better locality of the target node
 - Introduce the teleport probability $\boldsymbol{\alpha}$
 - Staying close to the root node to avoid oversmoothing, and leveraging the information from a large neighborhood
 - Separate the neural network from the propagation scheme

DEEP ADAPTIVE GRAPH NEURAL NETWORK (DAGNN)

Idea: Decouple transformation and propagation

OUTLINE

- Homogeneous Network Embedding
- Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding
- Training GNN
 - Self-supervised learning
 - Going deeper with GNN
- Applications of Graph Machine Learning

APPLICATIONS OF GRAPH MACHINE LEARNING: COMPUTER VISION

Scene graph

• Objects in a scene usually have relationships with each other

APPLICATIONS OF GRAPH MACHINE LEARNING: NATURAL LANGUAGE PROCESSING

• **Document classification**, Sentiment analysis

Semantic role labeling

(Figure credit): <u>https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf</u> (Figure credit): https://shikhar-vashishth.github.io/assets/pdf/emnlp19_tutorial.pdf

APPLICATIONS OF GRAPH MACHINE LEARNING: BIO-MEDICAL DOMAIN

Classifying the function of proteins in the interactome!

Image from: Ganapathiraju et al. 2016. <u>Schizophrenia interactome with 504 novel</u> protein-protein interactions. *Nature*.

Node Classification

Identifying disease proteins in the interactome!

Image from: Menche et al. 2015. <u>Uncovering disease-disease relationships</u> through the incomplete interactome. *Science*.

Community Detection

Link Prediction

CONCLUSION

- How to model different types of graphs?
 - Homogeneous Network Embedding
 - Multi-aspect Network Embedding
 - Attributed Network Embedding
 - Heterogeneous Network Embedding
- How to effectively training GNN?
 - Self-supervised learning for GNN
 - Going deep with GNN

Homogeneous Network Embedding

- Deepwalk: Online learning of social representations, KDD2014
- node2vec: Scalable Feature Learning for Networks, KDD2016
- LINE: Large-scale Information Network Embedding, WWW2015
- Structural Deep Network Embedding, KDD2016
- GraRep: Learning Graph Representations with Global Structural Information, CIKM2015
- Deep Recursive Network Embedding with Regular Equivalence, KDD2018

Multi-aspect Network Embedding

- Is a single vector enough? Exploring node polysemy for network embedding, KDD2019
- Is a single embedding enough? learning node representations that capture multiple social contexts, WWW2019
- Unsupervised Differentiable Multi-aspect Network Embedding, KDD2020
- Categorical reparameterization with gumbel-softmax, ICLR2017
- Disentangled Graph Convolutional Networks, ICML2019

Attributed Network Embedding

- Deep Attributed Network Embedding, IJCAI2018
- Revisiting Semi-Supervised Learning with Graph Embeddings, ICML16
- Semi-Supervised Classification with Graph Convolutional Networks, ICLR2017
- Inductive Representation Learning on Large Graphs, NeurIPS2017
- Simplifying Graph Convolutional Networks, ICML2019
- Graph Attention Networks, ICLR2018
- MINE: Mutual Information Neural Estimation, ICML2018
- Learning deep representations by mutual information estimation and maximization, ICLR2019
- Deep Graph Infomax, ICLR2019
- HDMI: High-order Deep Multiplex Infomax, WWW2021

Heterogeneous Network Embedding

- metapath2vec: Scalable Representation Learning for Heterogeneous Networks, KDD2017
- HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning, CIKM2019
- Graph Transformer Networks, NeurIPS2019
- An Attention-based Collaboration Framework for Multi-View Network Representation Learning, CIKM2017
- Modeling Relational Data with Graph Convolutional Networks, ESWC2018
- Heterogeneous Graph Attention Network, WWW2019
- Unsupervised Attributed Multiplex Network Embedding, AAAI2020
- Task-guided and path-augmented heterogeneous network embedding for author identification, WSDM2017
- Camel: Content-Aware and Meta-path Augmented Metric Learning for Author Identification, WWW 2018
- Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

Training GNN (Self-supervised learning)

- Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020
- Self-Supervised Graph Representation Learning via Global Context Prediction, arxiv2020
- Strategies for Pre-training Graph Neural Networks, ICLR2020
- Contrastive Multi-View Representation Learning on Graphs, ICML2020
- GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training, KDD2020
- GPT-GNN: Generative Pre-Training of Graph Neural Networks, KDD 2020
- Multi-stage self-supervised learning for graph convolutional networks on graphs with few labels, AAAI2020

Training GNN (Going deeper with GNN)

- Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI2018
- PairNorm: Tackling Oversmoothing in GNNs, ICLR2020
- DropEdge: Towards Deep Graph Convolutional Networks on Node Classification, ICLR2020
- Simple and Deep Graph Convolutional Networks, ICML2020
- Predict then Propagate: Graph Neural Networks meet Personalized Pagerank, ICLR2019
- Towards Deeper Graph Neural Networks, KDD2020

THANK YOU

- Contact: cy.park@kaist.ac.kr
- Lab homepage: <u>http://dsail.kaist.ac.kr</u>

GUMBEL-SOFTMAX

- A simple way to draw a one-hot sample z from the categorical distribution
- Given: A K-dimensional categorical distribution with class probability $\pi_1, \pi_2, \dots, \pi_K$

GRAPH TRANSFORMER NETWORKS

- **Motivation**: Do we need predefined metapaths?
- Idea: Automatically learn useful meta-paths for given data and tasks

 $R = \{\text{P-P, P-A, A-P}\}$

OTHER EXAMPLES OF MULTIPLEX NETWORK

Multiplex biological networks

CAMEL

Model the paper abstract using a GRU-based encoder

1) Context Path-aware Pair Embedder

• Step 1: Pair Embedder (Embedding Paper–Author Pair)

1) Context Path-aware Pair Embedder

• Step 2: Context Path Embedder (Embedding Context Path)

What is a **context path**?

A sequence of nodes between a target node pair

Why do we consider the **context path**?

We can infer the research topic related to the pair (v, u) by examining the path between paper v and author u

1) Context Path-aware Pair Embedder

• Step 3: Injecting Context Information into Pairs

Benefit

Pair embedding \approx Embeddings of frequent context paths

→ Pair embedding encodes its related research topic

2) Pair Validity Classifier (Validity of Pair Embedding)

Objective

- Classify whether the pair is valid or not

$$\mathcal{L}_{\text{pv}}(v, u) = y_{v, u} \sigma(\boldsymbol{\pi}(\mathbf{g}(v, u))) + (1 - y_{v, u})(1 - \sigma(\boldsymbol{\pi}(\mathbf{g}(v, u))))$$

 $y_{v,u} = \begin{cases} 1, & \text{paper } v \text{ is written by author } u \\ 0, & \text{paper } v \text{ is not written by author } u \end{cases}$

Benefit

- Enables to identify relatively less active authors
 - The training of the embedding is no longer solely based on the frequency (Limitation of Skip-Gram)
- Two nodes will be embedded close to each other if
 - 1. Related to a similar research topic
 - 2. The pair itself is valid

TAPEM: JOINT OBJECTIVE

 $\mathcal{L} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$ $\mathcal{P} \in \mathcal{S}(\mathcal{P}) \ \mathbf{w} \in \mathcal{W}_{\mathcal{P}} \ v \in \mathbf{w} \ u \in \mathbf{w} [C_v - \tau: C_v + \tau]$

Context Path-aware Pair Embedder

Pair Validity Classifier

$$\mathcal{L}_{\mathrm{ctx}}(v,u) + \mathcal{L}_{\mathrm{pv}}(v,u)$$

- *S*(*P*): a set of meta-path scheme
- W_p : a set of random walks guided by meta-path p
- *τ*: window size
- C_v : position of paper v in walk w

DISENGCN

• Challenge: How to identify the subset of neighbors that are actually connected by node *u* due to factor *k*?

EXAMPLES OF PRETEXT TASKS ON GRAPHS

LOCAL STRUCTURE BASED PRETEXT TASK

Node property

• **Goal**: To predict the property for each node in the graph such as their *degree, local node importance,* and *local clustering coefficient*.

Predicted degree of node
$$v_i$$

 $\mathcal{L}_{self}(\theta', \mathbf{A}, \mathbf{X}, \mathcal{D}_U) = \frac{1}{|\mathcal{D}_U|} \sum_{v_i \in \mathcal{D}_U} (f_{\theta'}(\mathcal{G})_{v_i} - \frac{d_i}{d_i})^2$
Degree of node v_i

Edge mask

• Goal: To predict whether or not there exists a link between a given node pair

$$\mathcal{L}_{self}(\theta', \mathbf{A}, \mathbf{X}, \mathcal{D}_{U}) = \begin{array}{c} \text{Cross-entropy loss} \\ \\ \frac{1}{|\mathcal{M}_{e}|} \sum_{(v_{i}, v_{j}) \in \mathcal{M}_{e}} \ell \left(f_{w}(|f_{\theta'}(\mathcal{G})_{v_{i}} - f_{\theta'}(\mathcal{G})_{v_{j}}|), 1 \right) + \frac{1}{|\overline{\mathcal{M}}_{e}|} \sum_{(v_{i}, v_{j}) \in \overline{\mathcal{M}}_{e}} \ell \left(f_{w}(|f_{\theta'}(\mathcal{G})_{v_{i}} - f_{\theta'}(\mathcal{G})_{v_{j}}|), 0 \right) \\ \\ \\ \hline \text{Connected edges} \end{array}$$
 Not connected edges

Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020¹⁰¹

Distance from node v_i to cluster c_2

Self-Supervised Graph Representation Learning via Global Context Prediction, arxiv2020 Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020¹⁰²

ATTRIBUTE BASED PRETEXT TASK

- Attribute mask
 - Goal: To predict the masked attribute
 - Apply PCA to reduce the dimensionality of features

$$\mathcal{L}_{self}(\theta', \mathbf{A}, \mathbf{X}, \mathcal{D}_U) = \frac{1}{|\mathcal{M}_a|} \sum_{v_i \in \mathcal{M}_a} \|f_{\theta'}(\mathcal{G})_{v_i} - \mathbf{x}_i\|^2$$
Feature of node v_i

- Pairwise attribute similarity
 - Goal: To predict the similarity of pairwise node features

$$\mathcal{L}_{self}(\theta', \mathbf{A}, \mathbf{X}, \mathcal{D}_U) = \frac{1}{|\mathcal{T}|} \sum_{(v_i, v_j) \in \mathcal{T}} \|f_w(|f_{\theta'}(\mathcal{G})_{v_i} - f_{\theta'}(\mathcal{G})_{v_j}|) - s_{ij}\|^2$$

MAIN STRATEGIES FOR SSL IN GNN

Joint training

$$\min_{\theta,\theta'} \mathcal{L}_{task} \left(\theta, \mathbf{A}, \mathbf{X}, \mathcal{D}_L \right) + \lambda \mathcal{L}_{self} \left(\theta', \mathbf{A}, \mathbf{X}, \mathcal{D}_U \right)$$

Two-stage training

• Idea: Enlarge training dataset through self-training

MultiStage Self-Training Framework

Multi-stage self-supervised learning for graph convolutional networks on graphs with few labels, AAAI2020