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BRIEF BIO
§ Research Interest
• Data-Centric AI, Model-Centric AI, Multimodal Data Mining, AI for Science
• Mining meaningful knowledge from multimodal data to develop artificial 

intelligence solutions for various real-world applications across different 
disciplines

• Multi-modal Learning, Graph neural network 
• Application domains: Recommendation system, Social network analysis, Fraud 

detection, Sentiment analysis, Purchase/Click prediction, Anomaly detection, 
Knowledge-graph construction, Time-series analysis, Bioinformatics, Chemistry 
etc.

§ Professional Experience
• Assistant Professor, KAIST (2020.11 – Present)
• Postdoctoral Research Fellow, University of Illinois at Urbana-Champaign, 

Dept. of Computer Science (2019. 1 – 2020. 10)
• Research Intern, Microsoft Research Asia (2017. 9 – 2017. 12)
• Research Intern, NAVER (2017. 3 – 2017. 6)
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§Overview

§ Random walk-based Methods

§Graph Neural Networks (GNNs)

§How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

Outline
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§ A general description of data and their relations

§ A collection of objects (i.e., nodes), along with a set of interactions (i.e., edges) between pairs of 
these objects.

Graph (network)
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Various real-world graphs (networks) 

TransportationInternet-of-Things

Web graphMolecular graph Gene network

Social graph

(Figure credit) Web
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§ Undirected / Directed

§ Homogeneous network

§ Heterogeneous network
• Multiplex network
• Bipartite graph

Types of graph



8

§ A graph 𝐺 = (𝑉, 𝐸) is defined by a set of nodes 𝑉 and a set of edges 𝐸 between these nodes

§ An edge going from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉 is denoted as 𝑖, 𝑗 ∈ 𝐸

§ A convenient way to represent graphs is through an adjacency matrix 𝑨 ∈ 𝑅 ! ×|!|

• 𝑨!" = 1 if 𝑖, 𝑗 ∈ 𝐸, and 𝑨!" = 0 otherwise
• Some graphs have weighted edges, i.e., entries of 𝑨 are arbitrary real-values rather than {0,1}

Formal definition of graphs

§ Feature information 𝑿 ∈ 𝑅 ! ×#

0

1

..

0

𝑿𝟔 =

T
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§ Undirected Graph
• Adjacency matrix 𝑨 is symmetric
• 𝑢, 𝑣 ∈ 𝐸 ↔ 𝑣, 𝑢 ∈ 𝐸

Undirected graph vs. directed graph

§ Directed Graph
• Adjacency matrix 𝑨 is not symmetric
• 𝑢, 𝑣 ∈ 𝐸 ↮ 𝑣, 𝑢 ∈ 𝐸

• Examples
• Collaborations
• Friendship on Facebook

• Examples
• Paper citation
• Follow on Twitter
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Adjacency matrix

Undirected Graph

Directed Graph



11

§ A graph with a single type of node and a single type of edge

Homogeneous network

Social graph

(Figure credit) https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg

Word cooccurrence graph

Protein-Protein Interaction Graph

Homogeneous network

Num. node types = 1
Num. edge types = 1

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg
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§ In reality a lot of graphs have multiple types of nodes and multiple types of edges

§ Such networks are called “heterogeneous network”

Heterogeneous network (HetNet)

Num. node types > 1
Num. edge types > 1
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§ A type of heterogeneous network
• A single node type, multiple edge types

§ Example 1: Social network
• Relationship between users

§ Example 2: E-commerce
• Relationship between items

§ Example 3: Publication network
• Relationship between papers (Citation, share authors)
• Relationship between authors (Co-author, co-citation)

§ Example 4: Movie database
• Relationship between movies

• Common director, common actor

§ Example 5: Transportation network in a city
• Relation between locations in a city

• Bus, train, car, taxi

Multiplex (Multi-layer) network

Family

Schoolmate

Node: User

Num. node types = 1
Num. edge types > 1

Colleague

Social Network
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Other examples of multiplex network

14

Disease-Disease network

Share 
symptom

Share 
gene

Frequency based composition of brain

De Domenico, Manlio. "Multilayer modeling and analysis of human brain networks." Giga Science 6.5 (2017): gix004.
Halu, Arda, et al. "The multiplex network of human diseases." NPJ systems biology and applications 5.1 (2019): 1-12.
Didier, Gilles, Christine Brun, and Anaïs Baudot. "Identifying communities from multiplex biological networks." PeerJ 3 (2015): e1525.

Multiplex biological networks
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§ Nodes can be divided into two disjoint sets U and V such that every link connects a node in U to 
one in V
• U and V are independent sets

Bipartite graph

§ Examples
• Authors-to-Papers (they authored)
• Actors-to-Movies (they appeared in)
• Users-to-Movies (they rated)
• Recipes-to-Ingredients (they contain)
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Xu, Jian. "Representing Big Data as Networks: New Methods a
nd Insights." arXiv preprint arXiv:1712.09648 (2017).

Overview: 
Data as Graphs
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Classical ML tasks in graphs:
§ Node classification
• Predict a type of a given node

§ Link prediction
• Predict whether two nodes are linked

§ Community detection
• Identify densely linked clusters of nodes

§ Network similarity
• How similar are two (sub)networks

Machine learning on graphs

Link Prediction 
(Friend Recommendation)

??



18

Machine learning on graphs

Graphs

Node attribute

Input ML
Model

Classification

Clustering

Link 
Prediction

…

Representation 
Learning

Feature 
Engineering



19

§ Machine Learning = Representation + Objective + Optimization

Machine learning in general

Representation 
Learning

Raw data

Machine Learning 
System

Good Representation is Essential for 
Good Machine Learning

Yoshua Bengio, Deep Learning of Representations, AAAI 2013 Tutorial
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§ Fixed/Hand-crafted Feature Extractor

Traditional feature extraction for images

- Based on Yann Lecun’s slides
- Lowe, David G. "Distinctive image features from scale-invariant keypoints." International journal of computer vision 60.2 (2004): 91-110.

Hand-crafted feature
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Machine (Deep) learning based Representation learning

Based on Yann Lecun’s slides

§ Multiple layers trained end-to-end
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Traditional Graph Representation

(Figure credit) https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/8a7d3187-7c57-418c-a426-3aceab96f47f.xhtml

Problems
§ Suffer from data sparsity

§ Suffer from high dimensionality

§ High complexity for computation

§ Does not represent “semantics”

§ …

Adjacency matrix

How to effectively and efficiently represent graphs is the key!

→ Deep learning-based approach?
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§ Existing deep neural networks are designed for data with regular-structure (grid or sequence)
• CNNs for fixed-size images/grids …

Challenges of Graph Representation Learning

§ Graphs are very complex
• Arbitrary structures (no spatial locality like grids / no fixed orderings)
• Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
• Large-scale: More than millions of nodes and billions of edges

• RNNs for text/sequences …

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019
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§ Node-level prediction

§ Edge-level prediction

§ Graph-level prediction

Typical tasks
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§ Node-level tasks (or edge-level tasks)
• Node label classification, including node-level anomaly detection
• Node label regression
• Link label binary classification, i.e., link prediction
• Link label multi-class classification, i.e., relation classification

Typical tasks

Ø Social network analysis (e.g., demographic info prediction)
Ø Spam / fraud detection (e.g., transaction networks)
Ø Link prediction (e.g., social networks, chemical interaction 

networks, biological networks, transportation networks)
ØKnowledge graph population / completion / relation reasoning
ØRecommender system (bipartite graphs, hyper-graphs)
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Typical tasks

§ Graph-level tasks
• Graph label classification
• Graph label regression

ØMolecular property prediction
ØDrug discovery
Ø Scene understanding (i.e., objects graph)
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§Overview
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Outline
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§ Goal: Encode nodes so that similarity in the embedding space approximates similarity in the original net
work

§ Similar nodes in a network have similar vector representations

GRAPH REPRESENTATION LEARNING

Node Embedding

Node Vector
• Node classification
• Clustering
• Link prediction
• …

Tasks
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§ Main idea: Encode nodes so that similarity in the embedding space approximates similarity in the graph

NODE EMBEDDING

Original graph Embedding space
(Latent space)

§ Two things to consider
• 1. How to encode nodes?

• Encoder
• 2. How to define similarity in 

the embedding space?
• Decoder (Similarity function)
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§ Maps each node to a low-dimensional vector

ENCODER

𝐸𝑁𝐶 𝑣 = 𝒛1
𝑑-dimensional embedding vector

Node in the input graph

§ Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)

𝐸𝑁𝐶 𝑣 = 𝒛1 = 𝒁 ⋅ 𝑣 𝒁 ∈ 𝑅$×|'|

𝑑

|𝑉|

𝑣 ∈ 𝐼|'|

𝑣 =

0

0

0

1

0

0

0

0

ex) 𝑛𝑜𝑑𝑒 4

Each node is assigned a unique
embedding vector (i.e., we directly 

optimize the embedding of each node)
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§ Specifies how the relationships in the original graph map to relationships in embedding space

DECODER (SIMILARITY FUNCTION)

Relationships in embedding space Relationships in the original graph

≈
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	(𝑢, 𝑣) 𝒛$%𝒛&

Similarity between 
node 𝑢 and node 𝑣 in
the original network

Dot product between 
embeddings of node 𝑢

and node 𝑣
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§ Encoder: Embedding look-up (Shallow model)
• Deep encoders (GNNs) later in the lecture

§ Decoder: Based on dot product

ENCODER + DECODER FRAMEWORK

Original graph Embedding space
(Latent space)

Objective

Maximize 𝒛1<𝒛= for node pairs (𝑢, 𝑣) that are similar

§ How can we define node similarity?

§ Possible choice
• Are two nodes linked?
• Do they share neighbors?
• Do they have similar structural roles?
• …



33

§ A graph with a single type of node and a single type of edge

RECALL: HOMOGENEOUS NETWORK

Social graph

(Figure credit) https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg

Word cooccurrence graph

Protein-Protein Interaction Graph

Homogeneous network

Num. node types = 1
Num. edge types = 1

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg
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§ Given a graph and a starting node, 
• 1. Select a neighbor of it at random,
• 2. Move to this neighbor
• Repeat 1,2

§ Example of random walk
• Start à 5 à 8 à 9 à 8 à 11
• (Random) Sequence of nodes

WHAT IS RANDOM WALK?

Start
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§ Idea: Learn node embedding such that nearby nodes in the graph are close together in the embedding space

RANDOM WALK-BASED NODE EMBEDDINGS: OVERVIEW

§ Q. Given a node 𝑢, how do we define nearby nodes?

§ A. Through random walk!

§ Step 1. Estimate the probability of visiting node 𝑣
on a random walk starting from node 𝑢 using some 
random walk strategy 𝑅

§ Step 2. Optimize embeddings to encode these 
random walk statistics
• e.g., If two nodes co-occur, maximize their similarity

cf) Dot product = cosine similarity, if 
node embeddings are unit vectors

Why random walk?
Random walk can reflect both local and high-order neighborhood information
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§ Step 1: Run fixed-length random walks starting from each node 𝑢 in the graph using some random walk str
ategy 𝑅

RANDOM WALK-BASED NODE EMBEDDINGS: DETAILED ALGORITHM

§ Given: 𝐺 = (𝑉, 𝐸)

§ Goal: To learn a mapping function 𝑓: 𝑢 → 𝑅' for 𝑢 ∈ 𝑉
• 𝑓 𝑢 = 𝒛( ∈ 𝑅$

max
)

C
(∈'

log 𝑃(𝑁+ 𝑢 |𝒛()

Given node 𝒖, we aim to maximize the probability of its neighboring nodes

i.e., we want to learn embedding of node 𝑢 that is predictive of its neighboring nodes

(Maximum likelihood objective)

§ Step 2: For each node 𝑢 collect 𝑁( 𝑢 , the multiset of nodes visited on random walks starting from 𝑢
• 𝑁+ 𝑢 : Neighboring nodes of node 𝑢 under random walk strategy 𝑅

§ Step 3: Optimize embeddings according to the following objective
• Objective: Given node 𝑢, predict its neighbors 𝑁+(𝑢)
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HOW TO DEFINE NEIGHBORING NODES?

𝑁+ 𝑣! = 𝑏, 𝑐, 𝑑, 𝑒

𝑐

𝑣!
𝑑

𝑒

𝑓

𝑎

𝑏

𝑎 → 𝑏 → 𝑐 → 𝑣! → 𝑑 → 𝑒 → 𝑓Example sequence

Window size=2 𝑎 → 𝑏 → 𝑐 → 𝑣! → 𝑑 → 𝑒 → 𝑓

Neighborhood 

Center node 𝑣!

𝑅Random walk strategy
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RANDOM WALK-BASED NODE EMBEDDINGS: OPTIMIZATION

max
)

C
(∈'

log 𝑃(𝑁+ 𝑢 |𝒛() 𝐿 = C
(∈'

C
,∈-!(()

− log(𝑃(𝑣|𝒛())
Equivalent

§ Intuition: Optimize embeddings 𝒛& to maximize the likelihood of random walk co-occurrences

§ Approach: Parameterize 𝑃(𝑣|𝒛&) using softmax

𝑃 𝑣 𝒛( =
exp(𝒛(0𝒛,)

∑"∈' exp(𝒛(0𝒛")

𝐿 = 0
=∈T

0
1∈U!(=)

− log(
exp(𝒛=<𝒛1)

∑V∈T exp(𝒛=<𝒛V)
)

Sum over nodes 𝑣 seen 
on random walks 
starting from 𝑢

Predicted probability of 
𝑢 and 𝑣 cooccurring on 

random walk

Sum over 
all nodes 𝑢

Optimizing random walk embeddings 
= Finding embeddings 𝒛= that 

minimizes the loss 𝐿
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§ But, optimizing the loss 𝑳 is expensive!

NEGATIVE SAMPLING

𝐿 = 0
=∈T

0
1∈U!(=)

− log(
exp(𝒛=<𝒛1)

∑V∈T exp(𝒛=<𝒛V)
)

- 𝑂 𝑉 1 complexity
- We can approximate this normalization term

≈ log 𝜎 𝒛=<𝒛1 −0
VYZ

[
log(𝜎(𝒛=<𝒛V))

https://arxiv.org/pdf/1402.3722.pdf
• 𝜎 𝑥 = 2

234"#
(Sigmoid function)

• Makes each term a “probability” between 0 and 1
• 𝑃,: Random distribution over nodes

𝑗 ~ 𝑃T,

§ Instead of normalizing w.r.t. all nodes, just normalize against 𝑘 random “negative samples” 𝑗

§ How do we sample from 𝑃! to help the training process?
• Sample 𝑘 negative nodes considering the degree of each node

log(
exp(𝒛=<𝒛1)

∑V∈T exp(𝒛=<𝒛V)
)
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§ After we obtained the objective function, how do we optimize (minimize) it?

RANDOM WALK-BASED NODE EMBEDDINGS: OPTIMIZATION

𝐿 = C
(∈'

C
,∈-!(()

− log(𝑃(𝑣|𝒛())

§ Gradient descent: A simple and the most common way to minimize 𝐿
• Step 1: Randomly initialize 𝒛! for all 𝑖 ∈ 𝑉
• Step 2: Iterate until convergence

• For all 𝑖 ∈ 𝑉, compute the derivative w.r.t. the loss 𝐿, i.e., "#"𝒛!
• For all 𝑖 ∈ 𝑉, update 𝒛% ← 𝒛% − 𝜂

"#
"𝒛!

§ Stochastic Gradient descent: Instead of evaluating gradients over all examples, evaluate for a single node
• Step 1: Randomly initialize 𝒛! for all 𝑖 ∈ 𝑉
• Step 2: Iterate until convergence: 𝐿(() = ∑,∈-!(()− log(𝑃(𝑣|𝒛())

• Sample a node 𝑖, for all 𝑗 ∈ 𝑁&(𝑖) compute the derivative w.r.t. the loss 𝐿, i.e., "#
(!)

"𝒛$

• For all 𝑗 ∈ 𝑁&(𝑖), update 𝒛' ← 𝒛' − 𝜂
"#(!)

"𝒛$
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§ Idea: Use flexible, biased random walks that can trade off between local and global views of the network
• Deepwalk’s simple random walk mainly focuses on the global view

§ Two strategies to define a neighborhood 𝑁( 𝑢 of node 𝑢: BFS and DFS

§ Example: Walk of length 3 from node 𝑢
• 𝑁567 𝑢 = {𝑠2, 𝑠1, 𝑠8} Local microscopic view
• 𝑁967 𝑢 = {𝑠:, 𝑠;, 𝑠<} Global macroscopic view

(Breadth First Search)

(Depth First Search)

NODE2VEC: BIASED WALKS

BFS DFS

𝑢 𝑢

How can we interpolate between BFS and DFS?
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§ Biased fixed-length random walk 𝑅 starting fro
m node 𝑢 generates neighborhood 𝑁((𝑢)

§ Two parameters to control the interpolation
• Return parameter 𝑝

• Return back to the previous node
• In-out parameter 𝑞

• Moving outwards (DFS) vs. inwards (BFS)
• Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

NODE2VEC: INTERPOLATING BFS AND DFS

Current situation
- Random walk that started from node 𝑢 just traversed

edge (𝑠2, 𝑤) and is now at 𝑤
- At this point, neighbors of 𝑤 can be 𝑠2, 𝑠1, 𝑠8 or 𝑠:

Idea of biased random walk
Remember where the walk came from!
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

OUTLINE
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RECALL: MACHINE LEARNING ON GRAPHS

Graphs

Node attribute

Representation 
Learning

Input ML
Model

Classification

Clustering

Link 
Prediction

…

Feature 
Engineering
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§ Main idea: Encode nodes so that similarity in the embedding space approximates similarity in the graph

RECAP: NODE EMBEDDING

Original graph Embedding space
(Latent space)

§ Two things to consider
• 1. How to encode nodes?

• Encoder
• 2. How to define similarity in 

the embedding space?
• Decoder (Similarity function)
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RECAP: DEEPWALK/NODE2VEC

• 𝒪: The set of all observations obtained from random walks
• 𝑜 = 𝑁 𝑣! , 𝑣! ∈ 𝒪

• Center node 𝑣%
• Neighboring nodes 𝑁 𝑣%

𝑜 = 𝑁 𝑣! , 𝑣! =({𝑏, 𝑐, 𝑑, 𝑒},𝑣!)

𝑁 𝑣! = 𝑏, 𝑐, 𝑑, 𝑒

𝑐

𝑣!
𝑑

𝑒

𝑓

𝑎

𝑏

𝑎 → 𝑏 → 𝑐 → 𝑣! → 𝑑 → 𝑒 → 𝑓Example seq

Window size=2 𝑎 → 𝑏 → 𝑐 → 𝑣! → 𝑑 → 𝑒 → 𝑓

Neighborhood 

Center node 𝑣!

Observation 𝑜
Liu, Ninghao, et al. "Is a single vector enough? exploring node polysemy for network embedding." KDD 2019

§ Biased random walk
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§ Maps each node to a low-dimensional vector

RECALL: ENCODER

𝐸𝑁𝐶 𝑣 = 𝒛1
𝑑-dimensional embedding vector

Node in the input graph

§ Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)

𝐸𝑁𝐶 𝑣 = 𝒛1 = 𝒁 ⋅ 𝑣 𝒁 ∈ 𝑅$×|'|

𝑑

|𝑉|

𝑣 ∈ 𝐼|'|

𝑣 =

0

0

0

1

0

0

0

0

ex) 𝑛𝑜𝑑𝑒 4

Each node is assigned a unique
embedding vector (i.e., we directly 

optimize the embedding of each node)

From now on: Deep encoder
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§ Deep Encoder = Graph neural network (GNN)

DEEP GRAPH ENCODER

𝐸𝑁𝐶 𝑣 = 𝒛1

𝐸𝑁𝐶 𝑣 =
Multiple layers of non-linear 

transformations-based 
on graph structure

Shallow model

Deep model

Graph 
convolution

Graph 
convolution

• Node embedding
• Graph embedding
• Subgraph embedding
• Edge embedding
• …

Can we use existing deep learning models? e.g., CNN, RNN, etc
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§ Existing deep neural networks are designed for data with regular-structure (grid or sequence)
• CNNs for fixed-size images/grids …

RECAP: CHALLENGES OF GRAPH REPRESENTATION LEARNING

§ Graphs are very complex
• Arbitrary structures (no spatial locality like grids / no fixed orderings)
• Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
• Large-scale: More than millions of nodes and billions of edges

• RNNs for text/sequences …

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019
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§ Convolutional filters
• Local feature detectors
• A feature is learned in each local receptive field by a convolutional filter

BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGES

(Figure credit) https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CNN on an image
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§ How should we define local receptive fields on graphs?
• Local subgraphs

FROM IMAGES TO GRAPHS: LOCAL RECEPTIVE FIELD ON GRAPHS

Image Graph

(Figure credit) https://deepgraphlearning.github.io/coursewebsite/schedule

§ Idea: Transform information from the neighboring nodes and combine it
• Step 1: For each node 𝑣! , transform “messages” from neighbors 𝑁 𝑖

• 𝑊'ℎ' for 𝑣' ∈ 𝑁(𝑖), ℎ': “Message” from 𝑣'
• Step 2: Add them up: ∑,$∈-(!)𝑊"ℎ"

Graphs look like this

§ There is no fixed notion of locality 
or sliding window on the graph

§ No order among neighboring nodes
• Permutation invariant
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§ Idea: Node’s neighborhood defines a computation graph
• Messages contain relational information + attribute information

GRAPH CONVOLUTIONAL NETWORK (GCN)

Determine node 
computation graph

Propagate messages and 
transform information

Learn how to propagate information across the graph to compute node features

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ Generate node embeddings based on local network neighborhoods

§ Neighborhood aggregation
• Nodes aggregate information from their neighbors using neural networks
• Every node defines a computation graph based on its neighborhood

GCN: NEIGHBORHOOD AGGREGATION

Input graph Neural networks

Neighborhood
Aggregation

…

§ Things to consider
• 1. What kind of neural 

network?
• 2. How do we aggregate 

neighboring nodes?

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ 1. What kind of neural network?
• Simple multiplication of weight matrices (𝑩 and 𝑾)

GCN: BASIC APPROACH

𝒉𝒗
(ijZ) = 𝜎 𝑾i 0

=∈U 1

𝒉=
i

𝑁 𝑣 + 𝑩i𝒉1
i

∀𝑙 ∈ {0,1, … , 𝐿 − 1},

𝒛1 = 𝒉1
(k)

𝒉1l = 𝒙1

Weight matrix

Average of neighboring nodes’ 
previous layer embeddings

Embedding of 𝒗 at layer 𝒍 Total number of layers

Final embedding of 𝒗

Initial embedding of 𝒗

Feature of node 𝒗 How do we train the 
embeddings?

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

…

§ 2. What kind of aggregation?
• Average
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𝒉𝒗
(>32) = 𝜎 𝑾> C

(∈- ,

𝒉(
>

𝑁 𝑣 + 𝑩>𝒉,
>

§ GCN can be efficiently computed in a matrix form

GCN: MATRIX FORMULATION

∀𝑙 ∈ {0,1, … , 𝐿 − 1},

𝑧, = ℎ,
(?)ℎ,@ = 𝑥, ,

𝑫A2𝑨𝑯(>) (Matrix form)

𝑯(>32) = 𝜎(v𝑨𝑯 > 𝑾>
0 +𝑯 > 𝑩>0)

𝑯(BA2)

𝒉!
(BA2)

C
(∈- ,

𝒉(
> = 𝑨,𝑯(>)

𝑫,,, = 𝐷𝑒𝑔 𝑣 = |𝑁 𝑣 |

𝑫,,,A2 =
1

|𝑁 𝑣 |

𝑫A2

𝑫!,!A2
v𝑨 = 𝑫A2𝑨where

Neighborhood aggregation Self transformation

Since v𝑨 is sparse, sparse matrix multiplication 
can be used (efficient)

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

…
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§ We need to define the loss function on the embeddings

§ We can feed the final embeddings 𝒛𝒗 into any loss function and run SGD to train the weight parameters

GCN: TRAINING

§ 1) Supervised loss
min
*
D
$∈!

𝓛(𝑦$, 𝑓* 𝒛$ )

§ 2) Unsupervised loss
• No node label available
• We can use the graph structure as the supervision

• e.g., adjacency information
• In this case, 𝓛 is cross entropy (𝑨(,* = 1 if an edge exists between node 𝑣 and node 𝑢, otherwise 0)

• 𝑦,: Label of node 𝑣
• 𝑓D: Classifier with parameter 𝜃
• 𝓛 could be squared error if 𝑦 is real number (regression), or cross entropy if 𝑦 is categorical (classification)

min
*

D
$,&∈!

𝓛(𝑨$,&, 𝑓* 𝒛$, 𝒛& ) 𝑓D: Encoder 

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

§ Types of loss function: 1) Supervised loss, 2) Unsupervised loss
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§ Directly train the model for a supervised task (e.g., node classification)

GCN: SUPERVISED TRAINING

Adjacency matrix

Attribute matrix Partial label

Node embedding 
matrix

Prediction

ℒ = −D
$,∈!

𝑦$ log 𝑓* 𝒛$ + 1 − 𝑦$ log(1 − 𝑓* 𝒛$ )

Model predictionGround truth label

}𝑦 = 𝑓D(𝒛,)

𝒁

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ As we are not given node labels, we define our task to reconstruct the graph, i.e., Adjacency matrix

GCN: UNSUPERVISED TRAINING

Adjacency matrix

Attribute matrix Partial label

ℒ = − D
$,&∈!

𝑨$,& log 𝑓* 𝒛$, 𝒛& + 1 − 𝑨$,& log(1 − 𝑓* 𝒛$, 𝒛& )

Model predictionGround truth label

Node embedding 
matrix

𝒁

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ Idea: Treat different neighboring nodes differently

GRAPH ATTENTION NETWORKS (GAT)

𝒉$
(./0) = 𝜎 𝑾. D

&∈2 $

𝒉&
.

𝑁 𝑣
+ 𝑩.𝒉$

. (GCN)𝒉1
(ijZ) = 𝜎 𝑾i 0

=∈U 1 ∪1

𝛼1=𝒉=
(i)

Attention weight

• 𝛼,(: Importance of node 𝑢 to node 𝑣 as its neighboring node

§ In GCN, the importance was heuristically defined based on the structural property of the graph (node 
degree)
• 𝛼,( =

2
|-(,)|

: Does not depend on the neighbors (it is fixed)

§ All neighboring nodes 𝑢 ∈ 𝑁 𝑣 are equally important to node 𝑣

Not all neighbors are equally important!
Veličković, Petar, et al. "Graph attention networks." ICLR 2018
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§ Idea: Treat different neighboring nodes differently

GRAPH ATTENTION NETWORKS (GAT)

𝒉1
(ijZ) = 𝜎 𝑾i 0

=∈U 1 ∪1

𝛼1=𝒉=
(i)

Attention weight

• 𝛼,(: Importance of node 𝑢 to node 𝑣 as its neighboring node

𝑒1= = 𝑎(𝑾i𝒉1
i ,𝑾i𝒉=

i )

§ Computing the attention weight

𝛼1= =
exp(𝑒=1)

∑[∈U(1) exp(𝑒1[)
(Normalization)

𝑒34 = 𝑎(𝑾.50𝒉3
.50 ,𝑾.50𝒉4

.50 )

(Importance of node 𝑢’s 
message to node 𝑣)

How do we define 𝒂 ⋅ ?
Veličković, Petar, et al. "Graph attention networks." ICLR 2018
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GRAPH ATTENTION NETWORKS (GAT)

𝑒1= = 𝑎(𝑾i𝒉1
i ,𝑾i𝒉=

i ) (Importance of node 𝑢’s message to node 𝑣)

= Linear(Concat 𝑾i𝒉1
i ,𝑾i𝒉=

i )
Parameters of Linear layer is jointly trained 
end-to-end with other parameters of GAT

§ Defining the function 𝒂 ⋅

§ Multi-head attention (Refer to Lecture 5 - Transformer)

• Create multiple attention scores using multiple copies of parameters

𝒉,
(>) 1 = 𝜎 𝑾> C

(∈- , ∪,

𝛼,(
[2]𝒉(

(>)

𝒉,
(>) 2 = 𝜎 𝑾> C

(∈- , ∪,

𝛼,(
[1]𝒉(

(>)

𝒉,
(>) 3 = 𝜎 𝑾> C

(∈- , ∪,

𝛼,(
[8]𝒉(

(>)

𝛼,( =
exp(𝑒(,)

∑B∈-(,) exp(𝑒,B)

𝒉,
(>) = AGG(𝒉,

> 1 , 𝒉,
> 2 , 𝒉,

(>) 3 )

The final embedding aggregates the outputs 
of multi-head attention
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§ Generalization of GCN/GAT
• So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

GRAPHSAGE

𝒉1
(ijZ) = 𝜎 𝑾i 0

=∈U 1

𝒉=
i

𝑁 𝑣
+ 𝑩i𝒉1

i

Average of neighboring nodes

𝒉1
(ijZ) = 𝜎 𝑾i ⋅ AGG 𝒉=

i |𝑢 ∈ 𝑁 𝑣 ,𝑩i𝒉1
i

Generalized representation

Add self representation

Generalized representation

𝒉1
(ijZ) = 𝜎 𝑾i 0

=∈U 1 ∪1

𝛼1=𝒉=
(i)

Attention weight

GCN GAT

GraphSAGE

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurIPS 2017
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§ Generalization of GCN/GAT
• So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

GRAPHSAGE

𝒉1
(ijZ) = 𝜎 𝑾i ⋅ AGG 𝒉=

i |𝑢 ∈ 𝑁 𝑣 ,𝑩i𝒉1
i

Generalized representation Generalized representation
(Concatenation here)

§ Variants of AGG
• Mean: Same as GCN

• AGG = ∑*∈, (
𝒉%
&

, (

• Pool: Transform neighbor vectors and apply symmetric vector function

• AGG = 𝛾 MLP(𝒉*
(/))|𝑢 ∈ 𝑁 𝑣 , where 𝛾 is element-wise mean/max/min

• LSTM: Apply LSTM to shuffled neighbors
• AGG = LSTM 𝒉*

(/)|𝑢 ∈ 𝜋(𝑁 𝑣 )

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurIPS 2017
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§ GNN layer = 1) Message + 2) Aggregation

§ Compress a set of vectors into a single vector

A GNN LAYER: OVERVIEW

𝒉(
(/12) = 𝜎 𝑾/ F

*∈, (

𝒉*
/

𝑁 𝑣
+ 𝑩/𝒉(

/

𝒉,
(>32) = 𝜎 𝑾> C

(∈- , ∪,

𝛼,(𝒉(
(>)

𝒉,
(>32) = 𝜎 𝑾> ⋅ AGG 𝒉(

> |𝑢 ∈ 𝑁 𝑣 , 𝑩>𝒉,
>

(GCN)

(GAT)

(GraphSAGE)

§ (1) Message computation
• Message function: 𝒎(

(>) = MSG > (𝒉(
> )

• Example: A linear layer 𝒎(
(>) = 𝑾>𝒉(

(>)

§ (2) Aggregation
• 𝒉,

> = AGG 𝒎(
> |𝑢 ∈ 𝑁 𝑣

• Example: SUM(),MEAN(), or MAX() aggregator

• 𝒉(
/ = SUM 𝒎*

/ |𝑢 ∈ 𝑁 𝑣 = ∑*∈, ( 𝑾/𝒉*
/

= ∑(∈- , 𝒎(
>

§ Different types of GNN layers
• GCN, GraphSAGE, GAT, …
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§ Inductive learning: We can obtain embeddings for nodes that have not appeared in the training time
• e.g., In Amazon, new users are consistently added to the system, and it is impractical to re-train the system to get t

he embeddings for the new users

INDUCTIVE CAPABILITY OF GNN

§ This is possible because we do not train an embedding matrix as done in Deepwalk/node2vec

§ Instead, we train aggregator and transformer
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

OUTLINE
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

OUTLINE
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§ A form of unsupervised learning where the data provides the supervision

§ In general, withhold some part of the data, and task the network with predicting it

§ An example of pretext task: Relative positioning
• Train network to predict relative position of two regions in the same image

What is self-supervised learning?

(Figure credit) Unsupervised visual representation learning by context prediction, ICCV2015
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§ Pretext task: Jigsaw puzzle

What is self-supervised learning?

§ Pretext task : Colorization

Input OutputInput Output

§ Pretext task : Rotation
• Which one has the correct rotation?

(Figure credit) Self-Supervised Learning, Andrew Zisserman
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§ Algorithm
• 1) Sample mini batch of 𝑁 examples
• 2) Create 2𝑁 data points via Data Augmentation
• 3) Given a positive pair, treat other 2(𝑁 − 1) points as negative examples
• à Instance Discrimination!

The Contrastive Learning Paradigm

A simple framework for contrastive learning of visual representations, ICML 2020

Encoder

Projection Head

Reduce: Dist. between representations of different augmented views of the same image (Positive)
Increase: Dist. between representations of augmented views from different images (Negative)
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§ Pull the representation of the same node in the two augmented graphs 

§ Push apart representations of every other node

Deep Graph Contrastive Representation Learning (GRACE)

Deep Graph Contrastive Representation Learning, ICML Workshop 2020
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§ 1) Requires negative samples à Sampling bias
• Treat different image as negative even if they share the semantics

Shortcomings of Contrastive Methods

§ 2) Requires careful augmentation

MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph, KDD 2020
A simple framework for contrastive learning of visual representations, ICML 2020

Image classification Graph classification
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§ Image’s underlying semantic is hardly changed after augmentation

Motivation: Is Augmentation Appropriate for Graph-structured Data?

Augmentation-Free Self-Supervised Learning on Graphs, AAAI 2022

§ However in the case of graphs, we cannot ascertain whether the augmented graph would be positively 
related to original graph

Because graphs contain not only the semantic but also the structural information
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§ The quality of the learned representations relies on the choice of augmentation scheme
• Performance on various downstream tasks varies greatly according to the choice of augmentation hyperparameters

Motivation: Is Augmentation Appropriate for Graph-structured Data?

§ Performance sensitivity according to hyperparameters for augmentations

Node-level task Graph-level task

We need more stable and general framework for 
generating alternative view of the original graph 

without relying on augmentation
Augmentation-Free Self-Supervised Learning on Graphs, AAAI 2022
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§ Instead of creating two arbitrarily augmented views of a graph, 
• Use the original graph as-is as one view, and generate another view by discovering nodes that can serve as positive 

samples via k-nearest neighbor search in embedding space

Augmentation-Free Graph Representation Learning

We need to filter out false positives regarding local and global perspective!

§ However, naively selected positive samples with k-NN includes false positives
• More than 10% of false negatives

Augmentation-Free Self-Supervised Learning on Graphs, AAAI 2022

% of same label 
among neighbors
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• B!: Set of k-NNs of query 𝑣!
• N!: Set of adjacent nodes of query 𝑣!
• C!: Set of nodes that are in the same cluster with query 𝑣!

Capturing Local and Global Semantics

§ Obtain real positives for 𝑣6

§ Minimize the cosine distance between query and 
real positives P6	

Augmentation-Free Self-Supervised Learning on Graphs, AAAI 2022
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Overall Architecture of AFGRL

Augmentation-Free Self-Supervised Learning on Graphs, AAAI 2022
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§ Task: Node classification

Experiments

Augmentation-Free Self-Supervised Learning on Graphs, AAAI 2022

AFGRL outperforms SOTA baselines
AFGRL is stable over hyperparameters 
à Can be easily trained compared with 

other augmentation-based methods.

Recall…
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

Outline
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INTRODUCTION

• Explainable AI

• Reasoning process : 모델이 해당 결정을 내리기 위해 수행한 과정을 제시

• 모델이 올바른 예측 또는 잘못된 예측을 한 이유에 대한 과정을 시각화하고 분석

Chen, Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." Advances in neural information processing systems 32 (2019).

1. 입력 이미지로부터 feature 추출

2. 각 class에 대한 prototype과 유사성 점

수를 계산

3. 계산한 유사성 점수는 fully connected 

layer를 통해 output logit값을 생성

• 학습된 Prototype을 활용하여 reasoning process 제시

• 각 class에 대해 고정된 수의 prototype을 할당

프로토타입: 학습대상
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INTRODUCTION

• Reasoning process : 모델이 해당 결정을 내리기 위해 수행한 과정을 제시

Chen, Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." Advances in neural information processing systems 32 (2019).

새의 종을 분류

붉은배 딱따구리 붉은 벼슬 딱따구리

프로토타입 프로토타입유사성 
점수

유사성 
점수

붉은배 딱따구리에 대한 총 점수 붉은 벼슬 딱따구리에 대한 총 점수

기여도 
점수

기여도 
점수
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• Graph data 

• Node와 Edge로 구성, 개체 간의 관계를 표현하기 위해 사용

• Graph Classification : Graph가 어떤 레이블에 속하는지 예측

• Application : 분자 특성 예측, 약물 발견, 장면 이해

• 분자 구조의 Graph data

• 분자는 원자 간의 결합으로 구성되어 있어 Graph로 표현하기 적합

• Functional Group : 분자 전체의 특성을 결정 짓는 서브그래프

INTRODUCTION

분자 = Graph Functional Group = Subgraph

→ 중요한 subgraph를 탐지하기 위해 정보 이론 기반 방식이 제안됨

Interpretable Prototype-based Graph Information Bottleneck, NeurIPS 2023
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min
𝒢"#

−𝐼 𝑌, 𝒢�� + 𝛽 𝐼(𝒢; 𝒢��)

• Original graph 𝒢를 bottleneck graph 𝒢34로 압축하는 동시에 prediction Y와 관련된 정보를 유지하는 subgraph를 탐지

• 목표 : Label Y를 예측하는 데 중요한 Bottleneck graph 𝒢34을 찾는다.

• Mutual Information(I) : 특정 variable이 다른 variable에 영향을 미치는 정도

• Graph Information Bottleneck

Prediction Compression

INTRODUCTION

Interpretable Prototype-based Graph Information Bottleneck, NeurIPS 2023
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• ProtGNN 

• 그래프 데이터에서 Prototype을 활용하여 reasoning process를 제시한 모델 

• 모델이 특정 그래프를 해당 레이블로 예측하게 된 과정을 시각화 

Zhang, Zaixi, et al. "Protgnn: Towards self-explaining graph neural networks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. No. 8. 2022.

분자에 대한 특성을 예측

프로토타입 유사성 점수 프로토타입 유사성 점수

돌연변이성 비돌연변이성

INTRODUCTION

Functional 
Group
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• ProtGNN 

• 학습 과정에서 prototype이 중요한 subgraph를 포착하지 못하거나 불필요한 정보를 포함

• 𝐍𝐎𝟐(Functional group)를  제외한 다른  공통의 subgraph에 대해서 높은 similarity score를 계산

→ Prototype이 예측에 중요한 결정 근거를 충분히 포함하도록 해야함. 

→ Information Bottleneck를 Prototype 관점에서 접근하여 prototype이 예측에 중요한 subgraph에 관한 정보를 전달받음

Zhang, Zaixi, et al. "Protgnn: Towards self-explaining graph neural networks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. No. 8. 2022.

Functional Group

INTRODUCTION
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PROPOSED METHOD

Prototype Layer Subgraph Extraction Layer

Interpretable Prototype-based Graph Information Bottleneck

PGIB 
1. Identify core subgraphs.
2. Calculate similarity scores with prototypes.
3. Merge prototypes.
4. Predict the label from the fully connected layer.

• Architecture

Interpretable Prototype-based Graph Information Bottleneck, NeurIPS 2023
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EXPERIMENT
Graph Classification

Graph Interpretation

• 제안된 모델의 그래프 분류 성능이 여
러 최신 모델들을 능가함.

• 탐지된 subgraph가 분류성능을 향
상시키는데 기여

• 제안된 모델에 의해서 탐지된 
subgraph가 functional group

을 올바르게 포착함

Interpretable Prototype-based Graph Information Bottleneck, NeurIPS 2023



88

§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

Outline
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Background
Adversarial Attacks on Graph Structures
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3
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8

Attack!

8 Predicted as: 8 Predicted as: 

GNN GNN

Leads to the requirements of robust graph representation learning methods

• Graph Neural Networks are vulnerable to adversarial attacks on graph structures.

• Unsupervised GRL models are also vulnerable to such attacks.

Figure: Adversarial Attacks and Defenses: Frontiers, Advances and Practice, KDD’20 tutorial
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Motivation
Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

A graph with the worst-case attack 
maximizing contrastive loss 

Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022

Contrastive loss

Formulation of the adversarial attack in GCL models

Perturbation budgets

• Goal: to find the optimal edges and node feature perturbations for the 𝐀2, 𝐗2 that maximally increase the contrastive loss.
• Since we consider unsupervised adversarial attacks, a contrastive loss is employed instead of a supervised loss.
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Motivation
Characteristic of Adversarial Attacks on GCL

• If 𝐳!1 − 𝐳!HIB is large, 𝜹J is effective perturbation.
• 𝐳!1 − 𝐳!HIB is computed as follows:

• 𝐳!1 − 𝐳!HIB becomes large when degree term ↓ and feature diff. term ↑
• The degree of 𝑣! is small (low-degree nodes)
• The features of node 𝑣B (i.e., 𝐱B) is dissimilar from the aggregation of neighborhood features in a clean graph.

Characteristic of a generated adversarial view by contrastive loss
1. Attack the nodes that have low-degree.

2. Connect the nodes with dissimilar feature

Low 
feature similarity

High 
gradient

Assumption for simplicity
• GCL model with a 1-layer GCN w/o nonlinearity.
• Perturbs only one edge 𝑣% → 𝑣6.
• Attacked graph (𝐀2 + 𝜹7, 𝐗𝟏)
• 𝐙9:6 = 𝑓 𝐀2 + 𝜹7, 𝐗𝟏

Each point: the node pair

Low 
sum of degrees

Similarity Preserving Adversarial Graph Contrastive Learning, KDD 2023
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Motivation
Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

Formulation of Adversarial Graph Contrastive Learning (AGCL)

Adversarial graph view

• Goal: robust graph representation learning based on adversarial training (AT).
• Main idea: to force the representations in the clean graph to be close to those of the attacked graphs.

• The adversarial graph contrastive learning model minimizes the training objective.

GCL term AT term

Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022

Using the attacked graph as an 
additional augmentation !
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Motivation
AT fails to preserve node similarity !

• As previously demonstrated, adversarial attacks on graphs tend to connect nodes with dissimilar features.
Ø The neighborhood feature distribution is changed by the adversarial attacks.

• And AGCL reduces the distance between the clean view and the adversarial view to achieve robustness.
Ø Neglecting the changes in the neighborhood feature distributions in the adversarial view.

We argue that existing AGCL models obtain robustness at the expense of losing the feature information.

• indicates how much the feature information the representations have

• Solid line: OL score
• Bar plot: performance improvement compared to GRACE

We observe 
• GRACE-AT have higher accuracy than GRACE

Ø They obtain robustness.
• GRACE-AT have lower OL score than GRACE

Ø They lose the feature information.

Similarity Preserving Adversarial Graph Contrastive Learning, KDD 2023
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Motivation
Node similarity preservation is crucial !

• As previously demonstrated, existing AGCL models obtain robustness at the expense of losing the feature information.

• However, the node feature information is crucial for the robustness against graph structure attacks [1, 2].

• Moreover, preserving the node feature similarity becomes especially useful for most real-world graphs.
• Graphs with noisy node labels
• Graphs with heterophilous neighbors
• Low-degree nodes

To this end, we propose a similarity-preserving adversarial graph contrastive learning (SP-AGCL) framework

We argue that the robustness of AGCL model can be further enhanced 
by fully exploiting the node feature information.

[1] Graph Structure Learning for Robust Graph Neural Networks, KDD 2020
[2] Node Similarity Preserving Graph Convolutional Networks, WSDM 2021

Similarity Preserving Adversarial Graph Contrastive Learning, KDD 2023



95

Proposed Method
Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

View generation
• Step 1. Two stochastically augmented views, 𝐀2, 𝐗2 and (𝐀1, 𝐗1)

• Same as the previous GCL models

• Step 2. Adversarial View
• Structural perturbations

• Adversarial feature masking

• Existing works flip the node feature
• But, it corrupts the co-occurrence/correlation statistics.
• By masking instead of flipping, we maintaining them.

• Step 3. Similarity preserving view
• Aims to preserve the node feature similarity.
• kNN graph of node features 𝐀6;; 𝐗 , 𝐗

𝜕ℒ
𝜕𝐗2 +

𝜕ℒ
𝜕𝐗1 = 𝐆𝐗 ∈ ℝ-×6

𝜕ℒ
𝜕𝐀2 +

𝜕ℒ
𝜕𝐀1 = 𝐆𝐀 ∈ ℝ-×-

Similarity Preserving Adversarial Graph Contrastive Learning, NeurIPS 2023
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Proposed Method
Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

Cross-view Training for Robust GCL

GCL term AT term Similarity-preserving term

The representations of nodes with similar features are pulled together
, which in turn preserves the node feature similarity.

Similarity Preserving Adversarial Graph Contrastive Learning, KDD 2023
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Experiment
Preserving Feature Similarity is beneficial !

• SP-AGCL preserves the node feature similarity, which results in the robust graph representation.

• SP-AGCL consistently predicts reliable links compared with other baselines across all the perturbation ratios.
• Moreover, ARIEL, the sota AGCL model, shows the worst performance 

Node feature information is beneficial to predicting reliable links 
since nodes with similar features tend to be adjacent in many real-world graphs.

Similarity Preserving Adversarial Graph Contrastive Learning, KDD 2023
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

Outline
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Outline
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Features
- Reaction Rate
- Pressure
- Bond Type
- Activation Energy
- Stoichiometry
- Bond Energy
- Intermolecular Forces
- Temperature ⋯

Prediction

Graph�Neural�Network�

Introduction: Molecular Property Prediction

ex)�Band�gap,�DOS,�Fermi�

§ Predict the properties of a molecule (소재 물성 예측)
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§ Molecules can be represented as a graph with node features and edge features
• Node features: atom type, atom charges… 
• Edge features: valence bond type… 

Molecular Graphs
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§ Unified various graph neural network and graph convolutional 
network approaches

Message Passing Neural Network

Neural message passing for quantum chemistry. ICML 2017

𝑣

𝑤2

𝑒,M%

𝒉,I

𝒉M%
I

𝑤1 𝑤8

𝑀I(𝒉,I , 𝒉M%
I , 𝑒,M%) Neighbor of 𝑣

Edge embedding
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§ Sometimes, we also know the 3D positions of atoms, which is actually more informative

§ A geometric graph 𝐺 = (𝐴, 𝑆, 𝑋) is a graph where each node is embedded in 𝑑-dimensional 
Euclidean space:

Geometric Graphs

• 𝐴: an 𝑛×𝑛 adjacency matrix
• 𝑆 ∈ 𝑅N×): Scalar features (atom type, atom charges, …)
• 𝑋 ∈ 𝑅N×$: tensor features, e.g., coordinates

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf
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§ Supervised Learning: Prediction
• Properties prediction
• 3D Protein-ligand interaction (binding)

Broad Impact on Sciences

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf
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§ Supervised Learning: Structured Prediction
• Molecular Simulation

Broad Impact on Sciences

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf
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§ Generative Models
• Drug or material design

Broad Impact on Sciences

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf
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§ To describe geometric graphs, we use coordinate systems
• (1) and (2) use different coordinate systems to describe the same molecular geometry. 

§ We can describe the transform between coordinate systems with symmetries of Euclidean space
• 3D rotations, translations

Geometric graph is more challenging than Molecular graph

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf

However, output of traditional GNNs given (1) and (2) are completely different!
à Enforcing symmetry is crucial (Invariant GNNs)
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§ Input
• Feature representations of 𝑛 atoms 𝑋> = (𝒙2> , … , 𝒙N> ) with 𝒙!> ∈ 𝑅6

• At locations 𝑅 = (𝒓2, … , 𝒓N) with 𝒓! ∈ 𝑅9 (𝐷 = 3 for 3-dim coordinates)

§ Output
• Molecular total energy 𝐸(𝒓2, … , 𝒓N)

Schnet: Overview

• A filter generating function 𝑊>: 𝑅9 → 𝑅6 is determined by 
the relative position from neighbor atoms 𝑗 to 𝑖

• ◦ is the element-wise multiplication

§ SchNet updates the node embeddings at the 𝑙-th layer by message passing layers

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions, NeurIPS 2017
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§𝑊 is invariant by scalarizing relative positions with relative distances ( 𝑟U − 𝑟V = 𝑟UV = 𝑑UV) 
• ‖𝑟!"‖ is invariant to rotations and translations

§ Hence, each message passing layer 𝑊W is invariant

à Aggregated node embeddings

à Node embeddings are invariant!

Schnet: Invariance

is invariant
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§ Solvation free energy
• Change in free energy for a molecule to be transferred from gas phase to a given solvent
• Quantifies solubility of drug molecules

• A large negative value à high solubility
• A lower magnitudes/positive value à poor solubility

Predicting Solvation Free Energy (용매화 자유 에너지)

https://www.ibric.org/upload/geditor/201704/0.95691900_1493095501.png

Solvation free energy
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§ Relational Learning
• 두 개체 사이의 관계를 예측하는 기계 학습 분야

• 특히, 두 화학 물질 사이의 관계를 예측하는 것은 화학 분야에서 매우 중요함

Introduction: Relational Learning

• Examples
• 발색체 (Chromophore)와 용매 (Solvent)가 반응했을 때의 광학적 성질 예측

• 용질 (Solute)와 용매 (Solvent) 가 반응했을 때의 용해도 예측
• 두 종류의 약물 (Drug) 을 동시에 섭취했을 때의 부작용 예측
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§ 작용기 (Functional Group)
• 유기화합물의 화학 반응적 특성을 결정하는데 중요한 역할을 하는 특정 원자단 혹은 구조

• 유기화학 반응 전후에 작용기의 변환에 따라 반응물과 생성물의 물리적/화학적 성질이 변화함
• 같은 작용기를 갖는 화합물의 특성은 대부분 유사하며, 유사한 화학 반응이 일어남

Introduction: Functional Group

GlucoseAlcohol

작용기

• Examples
• Hydroxyl Group 구조는 분자의 극성을 증가시키는 특성을 가지고 있음

• à Alcohol, Glucose 같이 Hydroxyl 구조를 포함한 분자들은 공통적으로 물에 대해 용해도가 높음

따라서, 화학 물질 사이의 상호작용을 예측하는 모델은 작용기를 기반으로 학습하는 것이 매우 중요함
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§ Molecule à Graph로 표현 가능

§ Functional Group à Subgraph 로 표현 가능

Introduction: Representing Molecules as a Graph

Functional�Group�1

Functional�Group�2

최근 Information Theory를 기반으로 Graph 구조에서 중요한 Subgraph를 찾는 모델이 주목

Molecule
(=Graph) 

Functional Group
(=Subgraph) 
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§ 기계학습�관점에서�그래프에서�중요한�Subgraph를�어떻게�찾아낼�것인가?

Information Bottleneck

Information Bottleneck Objective

(𝐼(𝑋, 𝑌): Mutual information between X and Y)

T와 Y 사이의 상호 정보량 최대화
à T가 Y 에 대한 정보를 최대한 가지고 있어야함
à Prediction

X와 T 사이의 상호 정보량 최소화
à T가 X 에 대한 정보를 최소한으로 갖도록
à Compression

X T Y
Compression Prediction

Bottleneck 
Variable

Input
Variable

Output
Variable

§ Solution: Information Bottleneck Theory
• 정보에 대한 압축 / 보존의 trade-off 에 대해 Theoretical 한 방법론

• Random variable X, Y 가 주어졌을 때, Y 의 정보를 최대한 유지하면서 X 의 정보를 최소한으로 담는 Bottleneck 
variable T를 학습
à 즉, input데이터 X를 최대한 압축하면서 target 값 Y는 계속 잘 맞출 수 있는 T를 학습

à Noise 에 robust한 representation 을 학습할 때 많이 사용됨

Conditional Graph Information Bottleneck for Molecular Relational Learning, ICML 2023
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§ Information�bottleneck�theory를�그래프에�어떻게�적용할�것인가?

Graph Information Bottleneck: Overview

𝓖 𝓖𝐈𝐁 Y
Compression Prediction

Bottleneck 
Graph

Input
Graph

Target
Variable

Functional Group

§ Information�Bottleneck�Graph�(IB-Graph)
• 기존 Graph 의 성질을 최대한 보존하는 Subgraph

• Subgraph를 Bottleneck variable 로 모델링
à Target Y를 맞추는데 가장 중요한 Subgraph 𝐺O5를 찾는 문제로 Formulation

Conditional Graph Information Bottleneck for Molecular Relational Learning, ICML 2023
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§ 작용기 (Functional Group)
• 유기화합물의 화학 반응적 특성을 결정하는데 중요한 역할을 하는 특정 원자단 혹은 구조
• 같은 작용기를 갖는 화합물의 특성은 대부분 유사하며, 유사한 화학 반응이 일어남

§ 한편, 용질 (Chromophore)이 어떤 용매 (Solvent)와 반응하는지에 따라서 중요하게 작용하는 
작용기가 다름

Recall: Functional Group

• Examples: C-CF3 구조는 분자의 물에 대한 용해도를 낮추는 역할을 함
• 하지만, C-CF3 구조가 분자의 기름에 대한 용해도에 미치는 영향에 대해서는 알려진 바가 없음

• 따라서, 화학 반응에서 중요한 작용기를 추출할 때 용매의 종류를 고려할 필요성이 있음

C-CF3 Structure

OilWater

Decrease Solubility Unknown

기존의 Information Bottleneck이론으로는 Material Science지식을 제대로 모델링할 수 없음
Conditional Graph Information Bottleneck for Molecular Relational Learning, ICML 2023
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Proposed Method: Conditional Graph Information Bottleneck

Prediction Loss

Compression Loss

Mutual Information 의 Chain Rule 에 따라 Conditional Mutual 
Information 을 분해 후 각 term 의 upper bound 유도
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(c) 다양한 solvent와 반응 (Trans-ethyl p-(dimethylamino) 
cinnamate (EDAC))
solvent의 화학적 극성에 따라 같은 Chromophore에서도 중요한 부분을 다
르게 탐지함

Result: Qualitative analysis

- Case1) Benzene solvent
Nitrogen-carbon 구조와 같은 극성이 낮은 구조가 중요함
à Benzene같은 무극성 solvent와 반응하기 때문

- Case2) Ethanol, THF, 1-hexanol, 1-butanol solvent
Oxygen-carbon 구조와 같은 극성이 높은 구조가 중요함
à Ethanol 과 THF 같은 극성 solvent와 반응하기 때문
à일반적으로 1-hexanol 과 1-butanol은 무극성 solvent로 분류되지만
-OH 구조로 인해 local 한 극성을 띄는 특성을 가짐

(a) 일반적인 solvent와 반응
화학 구조의 끝 부분을 중요시 여기는 기존의 화학 지식과 align

(b) 단순한 solvent와 반응 (ex. 액체 산소)
chromophore의 전체 부분이 반응한다고 여기는 기존의 화학 지식과 align

Conditional Graph Information Bottleneck for Molecular Relational Learning, ICML 2023
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

Outline
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Problem definition

• Integrate the multi-modal medical data (image and non-image data) for more accurate clinical decisions
• Capture important information from various aspects of the given data

Image data

Non-image data

Clinical Decision
Fusing Method

(research goal)

Heterogeneous Graph Learning for Multi-modal Medical Data Analysis, AAAI 2023
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Previous works

Naive multimodal fusion method

• Previous work demonstrates incorporating non-image data with images can significantly improve 
predictive performance

• But naïve integration of the modalities cannot fully benefit from the complementary 
relationship between the modalities.

G. Holste, S. C. Partridge, H. Rahbar, D. Biswas, C. I. Lee and A. M. Alessio, "End-to-End Learning of Fused Image and Non-Image Features for Improved Breast Cancer Classification from MRI," 2021 IEEE/CVF
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Motivation Medical data is multi-modal in nature

• Routine clinical visits of a patient produce not only image data, 
but also non-image data (i.e., clinical information).

• Multiple modalities of medical data provide 
different and complementary views of the same patient.

Integration of diverse and complementary views from medical data can make more 
informed and accurate clinical decisions.

Highest similarity value in each row

Heterogeneous Graph Learning for Multi-modal Medical Data Analysis, AAAI 2023
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Motivation Diverse aspects of Clinical data provides rich information on patients

• Patients who suffer from the same disease share highly similar 
non-image data compared with those in different classes

• But diverse aspects of non-image data induce 
complex similarity relationships between patients

RQ1: How to incorporate complex similarity relationship between patients?

Example
• Type 1 feature fail to find connection between CDR 1 and 2
• Type 2 feature can make preemptive clinical decision on CDR 1

All non-image 
Features

Non-image Features 
type 1

(Family history)

Non-image Features 
type 2

(Cognitive Abilities)

Heterogeneous Graph Learning for Multi-modal Medical Data Analysis, AAAI 2023



124

Methodology How can we capture the relationship between patients

• Single graph may miss the inherent complex relationships between patients
Ø Single graph considers all relationships as the same
Ø Whereas in reality, different relationships can have different characteristics and 
properties

Goldblum, B.L., Reddie, A.W., Hickey, T.C. et al. The nuclear network: multiplex network analysis for interconnected systems. Appl Netw Sci 4, 36 (2019).

Multiplex Network

Single Graph

• Multiplex network considers the multiple relationships between nodes as 
different layers in the network
Ø Each layer represents a specific type of relationship
Ø Multiplex network can capture the complex relationships between patients, as it 
acknowledges the heterogeneity of relationships in the network
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Methodology
How can we capture the inherent complex relationship between patients ? 

• Using Column-wise K-means Clustering, divide non-image data into non-overlapping |ℛ| types of features

• Using cosine-similarity and threshold for each type of non-image feature, construct multiplex network

𝑪 ∈ ℝ|𝒱|×6&'&"()* 𝒄(2), 𝒄(1), ⋯ , 𝒄 Q , ⋯ 𝒄(R)
Column-wise

K-means

Heterogeneous Graph Learning for Multi-modal Medical Data Analysis, AAAI 2023
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Methodology Overall Frameworks

Overall Frameworks of HetMed

Image Data
• Image Preprocessing (atlas transform)
• Learn the image encoder (pre-trained with non-medical image)
• Extract embeddings of images

Non-image Data
• Column wise K-means Clustering
• Construct multiplex network via cosine similarity of each patient

Learn Multiplex Network
• Node feature = Concatenate (image embedding, non-image data)
• Learn consensus embedding
• Diagnosis

Heterogeneous Graph Learning for Multi-modal Medical Data Analysis, AAAI 2023
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

Outline
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§ SGG aims to represent observable knowledges in an image in the form of a graph

• The Knowledges include 1) object information and 2) their relation information

• E.g., Object information: man, horse, glasses, … Relation information between objects: feeding, wearing, 
…

Step1. Object Detector

Step2. Relation Class 
Prediction

Step3. Select Top-k
Triplets

Output (Scene Graph)

Input (Image)

Scene graph generation (SGG)
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[Academic Graph] [Review Graph]

[KDD’19] Heterogeneous Graph Neural Network. Zhang et al.

Heterogeneous graph

§ Heterogeneous graph is a graph-structured data with more than one type of nodes or edges

• By considering associations between multiple types of nodes or edges, many works demonstrate that 
considering the heterogeneity of nodes/edges are helpful for learning the representations with the 
semantic information.
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[Example of a context-aware model]

Previous works

§ In the literature of SGG, it’s important to capture the context of neighborhood
• Considering <kid, holding, rail> and <woman, watching, elephant>  is helpful for predicting <kid, 
riding, elephant> 

• Compared with when kid and elephant are considered independently

• Context-aware SGG employs RNN, GNN, …, Transformer to aggregate features of neighboring objects.

Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Neural Network, AAAI 2023
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Limitations of previous works

§ Previous works consider the scene graph as homogeneous graph
• The assumption of homogeneity restricts the context-awareness of the visual relations between objects.

• Since it neglects the fact that predicates highly dependent on the objects where the predicates are associated.

• For example, when we consider <kid, riding, elephant>, we know  the opposite triplet <elephant , riding, kid> is not 
likely to appear.

• Because it is usually “Human” that rides “Animal”.

Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Neural Network, AAAI 2023
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Our Goal

§ We propose the Heterogeneous scene graph generation (HetSGG) framework
• HetSGG generates a scene graph  with relation-aware context

• Consider both object types (e.g., Human, Animal, Product) & relation types (e.g., Human-Animal, Human-Human, …,).

• We propose a novel message-passing called relation aware message-passing (RMP)

• Naturally captures the semantic between  “Human” and “Animal” to predict  <kid, riding, elephant>

Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Neural Network, AAAI 2023
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We expect the long-tailed problem is naturally alleviated in the formulation
of  heterogeneous graph distinguishing the relation type

Relieving long-tailedness

§ Overall predicate distribution is long-tailed
• Problem: Model primarily predicts the meaningless predicate (i.e., on, has)

§ Observation of  the reformulated distribution in condition of predicate types
• Animal-Human(AH): head predicate (e.g., “wearing”) in overall distribution

becomes tail predicate in AH distribution

• Human-Human(HH): tail predicate (e.g., “playing”) makes up a small proportion 

of the overall distribution, but the proportion improves in HH distribution

Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Neural Network, AAAI 2023



134

[Qualitative Result]

Red predicate: Incorrect for BGNN
Blue predicate: Correct for HetSGG and Incorrect for BGNN

Experiment: Qualitative results

§ a) BGNN predicts “hand hold boy”, but HetSGG predicts “hand of boy” 
• HetSGG predicts the correct predicate by filtering the non-sense semantic relation, such as “hand hold boy”

§ b) BGNN predicts “tree on hill”, but HetSGG predicts the fine-grained predicate (i.e., growing on)
• HetSGG alleviates the long-tailed predicate distribution, thus predicts the fine-grained predicate

Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Neural Network, AAAI 2023
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§ Overview

§ Random walk-based Methods

§ Graph Neural Networks (GNNs)

§ How to effectively train GNNs?
• Self-supervised Learning (AAAI’22)
• Explainable Model (NeurIPS’23)

• Robustness (KDD’23)

§ Applications of GNNs
• GNNs for Science (화학/소재/생물) (ICML’23)

• GNNs for Medical Data (멀티모달의료데이터 분석) (AAAI’23)

• GNNs for Computer vision (Scene Understanding) (AAAI’23)

Outline


