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FEW-SHOT LEARNING

4 )

a significant number of training tasks are needed!

8 8 8 To ensure the strong generalization power of meta-knowledge,
000
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IMPACT OF DIVERSITY OF TRAIN TASKS
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IMPACT OF DIVERSITY OF TRAIN TASKS
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IMPACT OF DIVERSITY OF TRAIN TASKS
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In real-world scenarios, creating diverse tasks becomes challenging
due to the high cost of labeling.

TEG learns highly transferable meta-knowledge
with limited diversity of training tasks!
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THE GENERAL PROCESS FOR SOLVING THE TASK

Embedding space
Input task, 73
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GNN R, o0
Task embedding '
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THE GENERAL PROCESS FOR SOLVING THE TASK
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Task-patterns : Relational positions between constituent nodes within the task.
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THE GENERAL PROCESS FOR SOLVING THE TASK
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THE GENERAL PROCESS FOR SOLVING THE TASK

Embedding space
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THE GENERAL PROCESS FOR SOLVING THE TASK
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Let’s share Task-adaptation Strategy! -» How?
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EQUIVARIANCE

A function F: X — Y is equivariant to a transformation p
Euclidean Transformations It satisfies:

- N Fop(x)=peF(x)
@ A@ The equation says that applying p on the input has the

same effect as applying it to the output.

9 original

\

rotation

reflection (inversion) reflection (mirroring)

Atz, Kenneth, Francesca Grisoni, and Gisbert Schneider. "Geometric deep learning on molecular representations." arXiv preprint arXiv:2107.12375 (2021).

20



EQUIVARIANCE

A function F: X — Y is equivariant to a transformation p
Euclidean Transformations It satisfies:

- N Fop(x)=peF(x)
@ A@ The equation says that applying p on the input has the

same effect as applying it to the output.

9 original )

\

rotation

reflection (inversion) reflection (mirroring) A function F: X — Y is invariant to a transformation p
It satisfies:

Fop(x)=F()

Atz, Kenneth, Francesca Grisoni, and Gisbert Schneider. "Geometric deep learning on molecular representations." arXiv preprint arXiv:2107.12375 (2021).
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APPLYING EQUIVARIANCE TO FEW-SHOT LEARNING
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Task adaptation strategy exhibits equivariance
to transformations of the task embedding.
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APPLYING EQUIVARIANCE TO FEW-SHOT LEARNING
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Task adaptation strategy exhibits equivariance
to transformations of the task embedding.

N2

Share adaptation strategies for tasks with
same/similar patterns.

- Task-Equivariance
The task embedder is equivariant to Euclidean

transformation of embeddings of set of nodes
within a task.
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APPLYING EQUIVARIANCE TO FEW-SHOT LEARNING
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Task adaptation strategy exhibits equivariance
to transformations of the task embedding.

N2

Share adaptation strategies for tasks with
same/similar patterns. - Task-Equivariance

N2

Well-generalized meta-knowledge
with low diverse training tasks.

-» Our task embedder can solve 75, 73,7,
if it can handle 73 .
J; is all we need for training data.
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APPLYING EQUIVARIANCE TO FEW-SHOT LEARNING

Embedding space

Considering only the relative embedding within a single task does not provide
enough information to distinguish the shining red node from the
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APPLYING EQUIVARIANCE TO FEW-SHOT LEARNING

Embedding space

( ) Considering only the relative embedding within a single task does not provide
i enough information to distinguish the shining red node from the
O]0)
06) —> We need the global information from the entire graph for each node.
8.
. y,
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APPLYING EQUIVARIANCE TO FEW-SHOT LEARNING

Embedding space

" ™)
T
o0
O.O - We
8.
- y,
-> We generate|structural features

Considering only the relative embedding within a single task does not provide
enough information to distinguish the shining red node from the

need the|global information|from the entire graph for each node.

as global information, which remain constant across all meta-tasks!

e.g., node2vec, DeepWalk, Shortest Path Distance, Centrality ---

—> Structural features are constant across all meta-tasks!
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MIMICKING THE N-BODY PROBLEM

N-body problem

Each instance has its own 1) properties (constant)
and 2) coordinates (relative)

Equivariance is needed.
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MIMICKING THE N-BODY PROBLEM

N-body problem
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Each instance has its own 1) properties (constant)
and 2) coordinates (relative)

Equivariance is needed.

Few-shot Problem

1) structural features (constant)
2) embeddings (relative)

Equivariance is needed.



METHODOLOGY

1. Generating Structural Features 2. Task sampling 4. Prediction
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METHODOLOGY

Generating Structural Features (h®)

Real-world graph datasets tend to consist of multiple connected components.

— Existing path-based structural features (such as SPD, DeepWalk ...) may be
hindered by no-path-to-reach problem.

Wchor node

31




METHODOLOGY

Generating Structural Features (h®)

Real-world graph datasets tend to consist of multiple connected components.

— Existing path-based structural features (such as SPD, DeepWalk ...) may be
hindered by no-path-to-reach problem.

1. Generate k virtual anchor nodes.
Vo = {vay,--> 0 }

a chor node

ﬁi@
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METHODOLOGY

Generating Structural Features (h®)

Real-world graph datasets tend to consist of multiple connected components.

— Existing path-based structural features (such as SPD, DeepWalk ...) may be
hindered by no-path-to-reach problem.

1. Generate k virtual anchor nodes.
Vo = {vay,--> 0 }

2. Vary the degrees of connectivity for each virtual anchor node.

auachor node a) High degrees

— alleviate the no-path-to-reach problem
b) Low degrees

i g — has high certainty of structural information.
ii \Eﬂ
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METHODOLOGY

Generating Structural Features (h®)

Real-world graph datasets tend to consist of multiple connected components.

— Existing path-based structural features (such as SPD, DeepWalk ...) may be
hindered by no-path-to-reach problem.

1. Generate k virtual anchor nodes.
Vo = {vay,--> 0 }

2. Vary the degrees of connectivity for each virtual anchor node.

auachor node a) High degrees

— alleviate the no-path-to-reach problem
b) Low degrees

— has high certainty of structural information.
ﬁ 3. Generate structural features based on the SPD from each k virtual node.
g \ HZ(JS) o (S(U: U(Z] ),S(U, Uaz)’°'-as(v3 Ua'k))

where s(v,u) = 1/(d*P(v,u) +1) and d*P(u,v) is the SPD between node v and u




METHODOLOGY

Generating Semantic Features (h!)

In order to reflect the semantic context of the entire graph, we employ
GCNs as a graph embedder to obtain the semantic feature H®

H) = GNNy(X,A)

35



METHODOLOGY

Generating Semantic Features (h!)

In order to reflect the semantic context of the entire graph, we employ
GCNs as a graph embedder to obtain the semantic feature H®

H) = GNNy(X,A)

Task Sampling

In the case of N-way K-shot, 1) K support nodes 2) M query nodes are samples for each class.
- NX(N + M) nodes for each task.

e.g., 3-way 3-shot 3-query task

—————— -

Support set Query set

 (000] 000
21000 000 !

" @00 000

3-shot 3-query

G o - o e e e o o e D D R e e D R e e e e e e
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METHODOLOGY

Task Adaptation

Utilizing the Equivariant Graph Neural Networks (EGNN*), the task embedder
plays adaptation to the given task.

Embedding space

In order to capture the relations between nodes within the t
ask, we use following as inputs :

____________

-,
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1
1
I
1
1

I \
1 1 1
1 1 1

4 I |——— S
1 1 1
1 1 1

1 1

: = 1. Task-specific graph structures, G,
@ Inputs | opus | 2. Coordinates of each node in the embedding space.
( 1. Task-specific ,’/—2_._C_o_o_r<;iin;t_e_s,_l;(l_)\) ( CoorqiT%t_e_s, 20 ) = Semantic featu res, h(l)

o N

structures, G,

="
## = 3. Constant properties of each node across all tasks.

1
1
1
1
1
\

3. Properties, h®) Properties, z()
o P = Structural features, h(®)
= =
= =
. B =
\ ke cJ N

* Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling. "E(n) equivariant graph neural networks."
International conference on machine learning. PMLR, 2021. 37



METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.
A A (DA 1),A
mij = gm(b{4 07 DA —nDA)2)

where A : the index of the layer, ¢,,,: Rt — R%,

Embedding space

el
3

.

T

OO0

X %

(O :Support node
<> :Query node
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METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.

I),A
mij = ¢ 0O b4 D A2)

where A : the index of the layer, ¢,,,: Rt — R%,

Constant properties of each node. ~J

Embedding space

.

(O :Support node
<> :Query node
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METHODOLOGY

Embedding space

Task Adaptation ("

1. Generate a message m,;; from node j to i. a)Tl 00

Constant properties of each node. AN
A A, (DA 1),A \e\‘)
m;; = ¢m{h§s) BRIP4 - p D)2 N €
A’

) Relative distance between two nodes. <+—

where 1 : the index of the lay = inv. %1 - R = inv.

— Transformation (i.e., translation, rotation, reflection) invariant.
(O :Support node
<> :Query node



METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.

m;; = ¢m(h§s)”‘, hﬁ.s)”l, ||h§l)”1 - h§.””1||2) — Transformation (i.e., translation, rotation, reflection) invariant.

where A : the index of the layer, ¢,,,: Rt — R%,

2. With the generated messages m;;, update coordinates.

jl
), I, 4 1), A
04 0% L SO O
j#i

where ¢; : R% — R, C : the number of nodes within a meta-task, excluding node i.
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T
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&
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METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.

m;; = ¢m(h§s)”‘, hﬁ.s)”l, ||h§l)”1 - h§.””1||2) — Transformation (i.e., translation, rotation, reflection) invariant.

where A : the index of the layer, ¢,,,: Rt — R%,

2. With the generated messages m;;, update coordinates.

jl
), DAl 1 1), A
004 0 L SO - O
j#i

where ¢; : R% — R, C : the number of nodes within a meta-task, excluding node i.

(

s
3
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" 00

o %

N
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METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.
m;j = ¢m(h§3)”1, hﬁ.s)”l, ||h§l)”1 - hj.l)”l”z) — Transformation (i.e., translation, rotation, reflection) invariant.

where A : the index of the layer, ¢,,,: Rt — R%,

. . e )
2. With the generated messages m;;, update coordinates.
Y
1 DA L (DA Q\ OO0
DA Jp DAL~ S P4 — D )| m;;
l l C;( i i ypr(ma) Relative position difference. O & p
“'
where ¢, : R% — R, C : the number of nodes within a meta-task, excluding node i. 8‘
- J




METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.
m;j = ¢m(h§$)”1, hﬁ.s)”l, ||hfl)”1 - hf.l)”l”z) — Transformation (i.e., translation, rotation, reflection) invariant.

where A : the index of the layer, ¢,,: R?st1 — R%,

. . r ™
2. With the generated messages m;;, update coordinates.
J1
pA+1 0], 1 DmP* —nlD g (my ) % OO0
’ ' C F— . Relative position difference. < .O
“'
where ¢; : R% — R, C : the number of nodes within a meta-task, excluding node i. 8‘
- Y,




METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.
m;j = ¢m(h§3)”1, hﬁ.s)”l, ||h§l)”1 - hj.l)”l”z) — Transformation (i.e., translation, rotation, reflection) invariant.

where A : the index of the layer, ¢,,,: Rt — R%,

_ _ 4 ™)
2. With the generated messages m;;, update coordinates.
N
DA, 1 1),A 1),A
R LD (LY Ve -1 . . % 08
G Relative position difference. o'.O
where ¢; : R% - R, nber of r = equi. k, excluding node i. 8A “““
—> Transformation equivariant. L y




METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.
m;j = ¢m(hgs)”1, hﬁ.s)”l, ||h§l)”1 - hf.l)”l”z) — Transformation (i.e., translation, rotation, reflection) invariant.
where 1 : the index of the layer, ¢,,,: R?%st1 — R4,

2. With the generated messages m;;, update coordinates.

L
ORI NO é > 0P —nPg (my) > Transformation equivariant.
i

where ¢, : R% — RY, C : the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties. - ~\

B
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iM

)

® &
RO
A3

where ¢, : R4+ds — R4




METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.
m;j = ¢m(hgs)”1, hﬁ.s)”l, ||h§l)”1 - hf.l)”l”z) — Transformation (i.e., translation, rotation, reflection) invariant.
where 1 : the index of the layer, ¢,,,: R?%st1 — R4,

2. With the generated messages m;;, update coordinates.

L
ORI NO é > 0P —nPg (my) > Transformation equivariant.
i

where ¢, : R% — RY, C : the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties. - ~\

m; = Z m;;

52
S

where ¢, : R4+ds — R4




METHODOLOGY

Task Adaptation

1. Generate a message m,;; from node j to i.
m;j = ¢m(hgs)”1, hﬁ.s)”l, ||h§l)”1 - hf.l)”l”z) — Transformation (i.e., translation, rotation, reflection) invariant.
where 1 : the index of the layer, ¢,,,: R?%st1 — R4,

2. With the generated messages m;;, update coordinates.

L
ORI NO é > 0P —nPg (my) > Transformation equivariant.
i

where ¢, : R% - R1, C : the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties. - ~
m; = Z m,-j
JEN(i) -> inv.

WM = g 0 m;) - Transformation invariant.

52
S

where ¢, : R4+ds — R4




METHODOLOGY

Task Adaptation
1. Generate a message m,;; from node j to i.
m;j = ¢m(hgs)”1, hﬁ.s)”l, ||hfl)”1 - hf.l)”l”z) — Transformation (i.e., translation, rotation, reflection) invariant.
where 1 : the index of the layer, ¢,,,: R?%st1 — R4,

2. With the generated messages m;;, update coordinates.

L

ORI NO é > 0P —nPg (my) > Transformation equivariant.
i

where ¢, : R% - R1, C : the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties.

WM — g WA m;) > Transformation invariant.

where ¢, : R4+ds — R4

The task embedder plays an important role where adaptation is made equivariantly with respect to the
transformation of semantic features.



METHODOLOGY

Prediction

The task adaptation strategies have to be equivariant, but we need to provide
the same prediction(logits) for different tasks that have same task-patterns.

— The metric of prediction should be invariant to the transformation.
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METHODOLOGY

Prediction

The task adaptation strategies have to be equivariant, but we need to provide
the same prediction(logits) for different tasks that have same task-patterns.

— The metric of prediction should be invariant to the transformation.

o ; e
X T

a0
% ® o °

We adopt ProtoNet* based prediction, which are using squared Euclidean distance, which an invariant metric to

transformations.
K
pgN) = Ii< Z Zg,li) where zgll) : final coordinates of the i-th support nodes, which belongs to class c.
i=1
l N
(c|lz) = exP(—d(Z((;r)y, p")) where d(-,+) : squared Euclidean distance.
Piclzqry 5:1 exp(—d(z((]lr)y, péf\’))) Then we classify the query node by finding the class with the highest probability.

M N
Ly = Z Z ~I(yq = c)log(p(clzc(ll))) where y, : ground truth label of the g-th query node, II(-) : indicator function.
q (4

51

*Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30.



METHODOLOGY

Prediction

We also calculate the loss using the semantic features before task adaptation,
which helps the graph embedder learn more distinguishable semantic features
between the classes.

1
péG) — I? E hé’ll.) where hglf : final coordinates of the i-th support nodes, which belongs to class c.
i=1
l G
exp(~d(hiy, i)

l
SN, exp(-d(h{),, p{))

p(clhélr)y) = where d(:,+) : squared Euclidean distance.

M N
Lg = Z Z _]I(yq = c)log(p(c|hc(ll))) where y, : ground truth label of the g-th query node, II(-) : indicator function.
q C

B
— o e
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METHODOLOGY

Prediction

We also calculate the loss using the semantic features before task adaptation,
which helps the graph embedder learn more distinguishable semantic features
between the classes.

K

© -1 ¥4,0 bere hD - firal coordinates of the ith tes which bel |

Pc = K c,i wnere ci Inal coordinates ot the t-th support nodes, which belongs to class c.
i=1

exp(-d(h,, pi))

(1) . .
p(clhgry) = l . where d(:,+) : squared Euclidean distance.
SN, exp(-d(h{),, p{))
M N
Lo= Z Z _]I(yq = c)log(p(c'hc(ll))) where y, : ground truth label of the g-th query node, II(-) : indicator function.
q C

Final Loss Function

L(6,9)=vyLn+(1-pyLc where y: tunable hyperparameter
Graph embedder

B
— o e



EXPERIMENTS

Main Results

Dataset H Cora-full Amazon Clothing
Method H 5way 1shot  5way 3shot  5way 5shot | 10way 1shot 10way 3shot 10way 5shot H 5way 1shot  5way 3shot  5way 5shot | 10way 1shot 10way 3shot 10way 5shot
MAML 2474 £3.20 2832 +1.83 30.13 +£4.33 10.11 £+ 049 1098 £1.02  12.89 + 1.78 45.60 £7.16  58.82 +5.52 64.88 £1.89 29.00 £1.86 3952 +£2.99 4398 +2.27
ProtoNet 3147 £1.65 3949 +1.46 4498+ 1.08 19.75+0.71  28.16 £1.73  31.34 £ 0.91 4237 +£2.42 57.74+1.09 62.83 +£3.10 3451 +2.13 49.16 +2.72  54.16 + 1.62
Meta-GNN || 51.57 +2.83 58.10 + 2.57 62.66 = 5.58 29.20 £ 236 32.10 +4.60 41.36 +2.25 7042 +1.66  76.72+2.65 76.27 £ 1.87 51.05+1.53 56.70 £2.22  57.54 £ 3.71
G-Meta 45.71 £ 197 54.64 +2.24 58.68 +5.16 3290 £0.84 46.60 £0.62 51.58 +1.23 61.71 £1.67 6794+199 73.28+1.84 5033 £1.62 62.07 £1.12 67.23 +1.79
GPN 51.09 £3.55 63.78 £0.66 65.89 + 2.53 40.24 + 194 5049 +234 53.75+2.13 61.39+1.97 73.42+2.77 76.40 % 2.37 5132 £1.30 64.58 £3.04 69.03 +0.98
TENT 5419 £2.23 65.20+1.99 68.77 £2.42 3772 £2.08 48.76 £+1.95 53.95 % 0.81 7552 +1.06 85.21+0.79 87.15+1.13 60.70 £ 1.66  72.44 + 1.81 77.53 £0.76
TEG 60.27 +1.93 74.24+1.03 7637 +1.92 | 45.26 + 1.03 60.00 + 1.16 64.56 + 1.04 || 80.77 £3.32 90.14 +0.97 90.18 £+ 0.95 | 69.12 + 1.75 79.42 +1.34 83.27 + 0.81

Dataset H Amazon Electronics DBLP

Method H 5way 1shot  5way 3shot  5way 5shot | 10way 1shot 10way 3shot 10way 5shot “ 5way 1shot  5way 3shot  5way 5shot | 10way 1shot 10way 3shot 10way 5shot
MAML 41.57 £ 632 5488 +2.84 62.90 = 3.81 28.75+1.70 40.75+3.20 41.98 +5.38 31.57 £3.57 43.52+£5.50 51.09 £5.68 16.05 £ 2.27  25.64 £2.24  25.66 £5.12
ProtoNet 4238 £1.62 5294 +1.31 5934+ 2.06 32.05+£3.23 4326 +1.72  49.49 = 3.01 3512+ 095 49.27+2.70 53.65 £ 1.62 2430 £0.76  39.42 +2.03 44.06 = 1.57
Meta-GNN || 57.23 +1.54 66.19+240 70.08 £2.14 41.22+£285 4894 +£1.87 53.55+1.51 63.07 £1.49 71.76 + 2.17 74.70 = 2.09 45.74 + 1.68 53.34 +258  56.14 + 0.88
G-Meta 47.14 +1.24 59.75+1.29 62.06 + 1.98 41.22+£1.86 48.64 £1.80 54.49 + 2.37 57.98 £1.98 68.19+1.40 73.11 £0.81 4738 +2.72 60.83 +1.35 66.12 +1.79
GPN 4832 +3.40 6341 +1.54 68.48 +2.38 4034 +1.86 53.82+1.24 59.58 +1.39 60.43 +3.06 6890+ 054 74.03 +£1.77 49.73 + 1.64 6234 +£1.67 64.48 +2.43
TENT 69.26 £ 132 79.12+097 81.65+1.31 56.93 +1.65 6856 £2.05 72.72+0.78 72.19+£1.92 81.84+1.82 8276 +£1.29 58.40 £ 1.41  68.55+1.38 7247 +£1.27
TEG 73.78 + 0.93 84.78 +1.52 87.17 +1.15 | 61.34 +1.58 76.48 +1.36 79.63 +0.73 || 74.32 +1.66 83.10+2.01 83.33+1.22 | 61.81+2.02 71.25+1.23 74.50*1.49

In a traditional few-shot learning settings (i.e., using sufficient training meta-tasks), TEG outperforms all the baselines.



EXPERIMENTS

Impact of Diversity of Meta-Train Tasks

Dataset Amazon Electronics Amazon Clothing
Setting 5way 5shot 10way 5shot 5way 5shot 10way 5shot
Class/label Avail. || 50%/10% 30%/2% 10%/1% | 50%/10% 30%/2% 10%/1% || 50%/10% 30%/2% 10%/1% | 50%/10% 30%/2% 10%/1%

MAML 58.50 55.10 52.00 44.31 40.48 34.04 58.62 53.30 50.16 38.22 33.70 34.46
ProtoNet 54.93 54.86 47.15 47.75 42.80 33.93 57.78 51.89 46.74 43.21 37.22 37.02
Meta-GNN 68.10 62.45 56.24 47.70 41.23 33.86 75.28 73.73 66.29 54.18 50.83 45.70
G-Meta 58.62 53.30 50.16 38.22 33.70 34.46 58.50 55.10 52.00 44.31 40.48 34.04
GPN 69.68 62.14 55.33 58.66 51.06 45.51 73.06 71.06 70.66 65.25 61.24 60.59
TENT 74.90 70.66 56.16 64.43 60.11 48.46 80.40 77.38 65.15 68.91 63.16 60.46
TEG 83.26 81.84 76.77 75.37 72.61 68.98 88.26 86.72 82.54 80.88 78.76 78.41

Rel Improv.

Our model achieves further performance improvements compared to the baseline methods as the diversity of tasks

decreases.

TEG outperforms other models when faced with limited meta-training tasks and has a strong ability to
adapt to new tasks with minimal training data, which is common in real-world scenarios.
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EXPERIMENTS

Effectiveness of Task-Equivariance

In order to verify the generalization ability of TEG achieved by the task-equivariance, we evaluate the model perfor
mance on a set of meta-tasks generated by transforming the meta-train tasks set.

1. Train models with meta-train tasks. = 2. Transform the meta-train tasks. > 3. Re-evaluate the models!
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Effectiveness of Task-Equivariance

In order to verify the generalization ability of TEG achieved by the task-equivariance, we evaluate the model perfor
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EXPERIMENTS

Effectiveness of Task-Equivariance

In order to verify the generalization ability of TEG achieved by the task-equivariance, we evaluate the model perfor
mance on a set of meta-tasks generated by transforming the meta-train tasks set.

1. Train models with meta-train tasks. = 2. Transform the meta-train tasks. > 3. Re-evaluate the models!

TEG(ref) ~—*— TEG(trans) -~ TENT(ref) ~ —&— TENT(trans) GPN(ref) GPN(trans) Tref : original meta-train tasks.
1.0 10+ Tirans : transformed meta-train tasks.
L 4
0.8 0.8
>
®
— 4 4
5 06 | . N 0.6
% ‘\A/A\k./a—ﬁ—k—/‘\‘
0.4 0.4
0.2 2 6 g 10 %% 2 2 6 8§ 10
Types of transformation Types of transformation

(a) Transformation only  (b) Transformation with noises

Tasks with same patterns  Tasks with similar patterns

Task-equivariance enables the model to acquire highly transferable meta-knowledge
that can be applied to new tasks with both same and similar task- patterns.
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CONCLUSION

- In meta-learning based few-shot learning, having a sufficient number of training meta-tasks is crucial.
- However, obtaining diverse training meta-tasks is challenging in real-world scenarios due to the high cost of labeling.

- To address this, TEG learns highly transferable task-adaptation strategies even from limited training meta-tasks with
low diversity.

- We incorporate equivariance into few-shot learning to maximize generalization with the limited tasks.
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APPENDIX

Table 5: Effect of using virtual anchor node for alleviating no-
path-to-reach problem. AC and AE denotes "Amazon Cloth-

ing" and "Amazon Electronics", respectively.

with virtual anchor nodes

w.o. virtual anchor nodes

Dimension | # Zero value Zero ratio # Zero value Zero ratio
Corafull 19,793 X 16 544 0.002 15,888 0.050
AC 24,919 X 16 1,280 0.003 66,662 0.167
AE 42,318 X 16 9,472 0.014 666,935 0.985
DBLP 40,672 X 16 0 0.000 352 0.001

Accuracy (%)
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73.5 4
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(a) Number of virtual anchor node k
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APPENDIX

Final Loss Function

L(6, ¢) =yLN + (1- Y)LG where y: tunable hyperparameter
Graph embedder

Cora-full Amazon Electronics
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(b) Loss weight coefficient y



