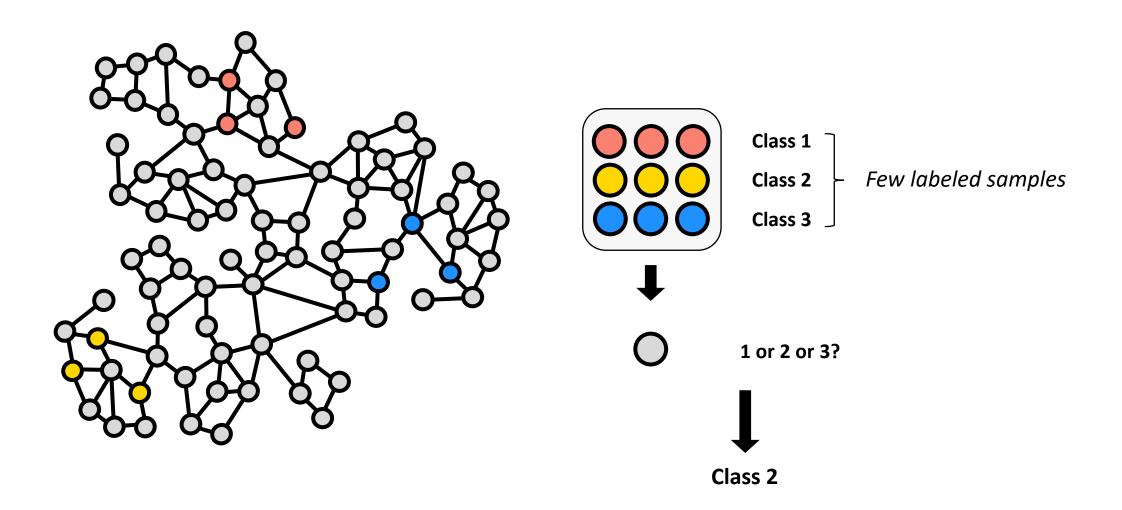
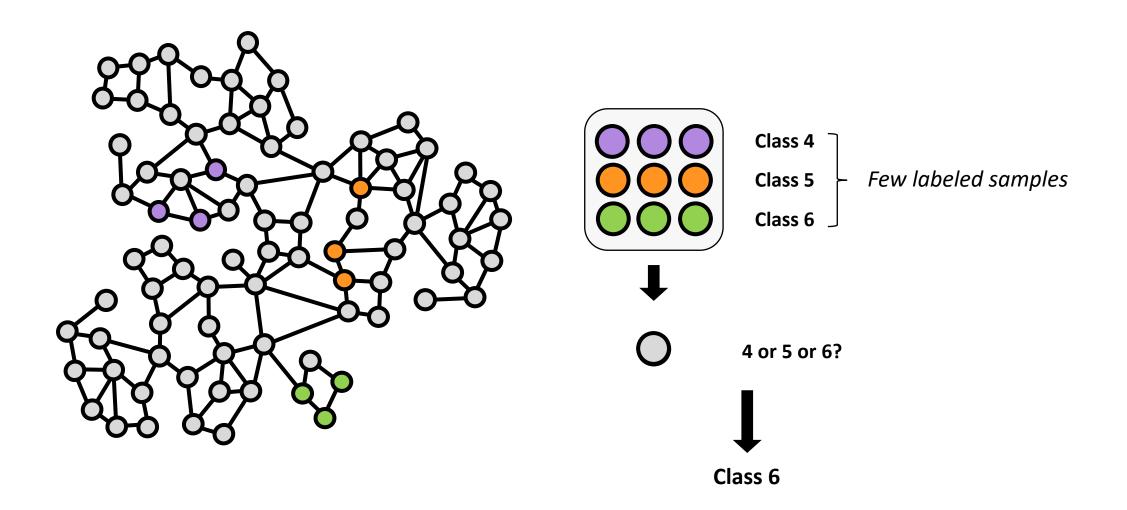
KDD-23 Research Track Paper

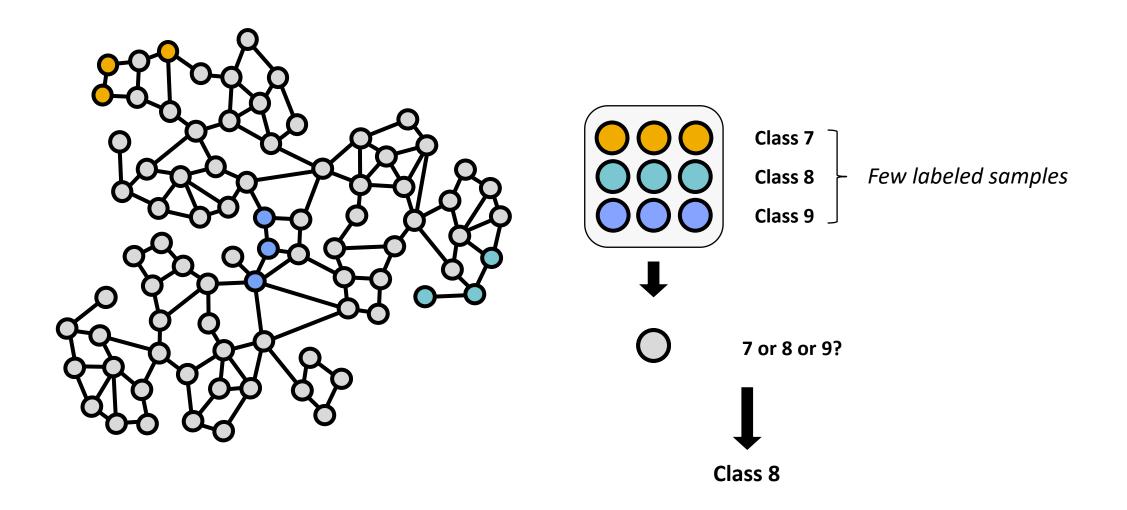
Task-Equivariant Graph Few-shot Learning

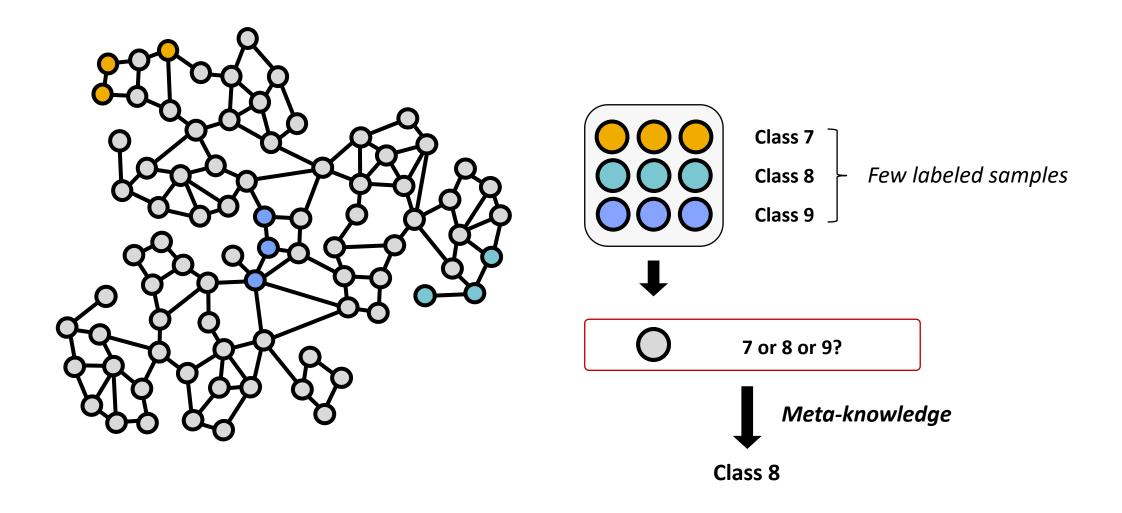
Sungwon Kim, Junseok Lee, Namkyeong Lee, Wonjoon Kim, Seungyoon Choi, Chanyoung Park

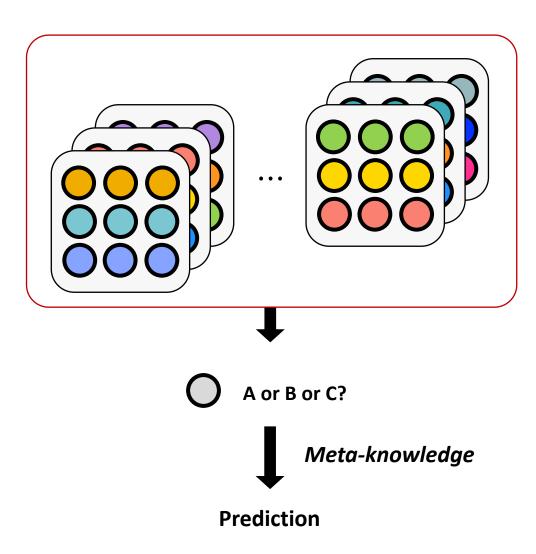
Korea Advanced Institute of Science and Technology (KAIST)



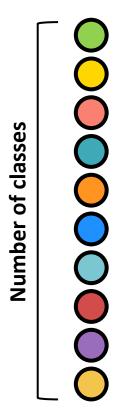


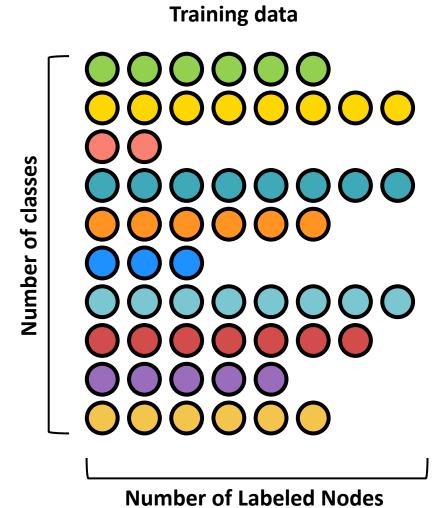


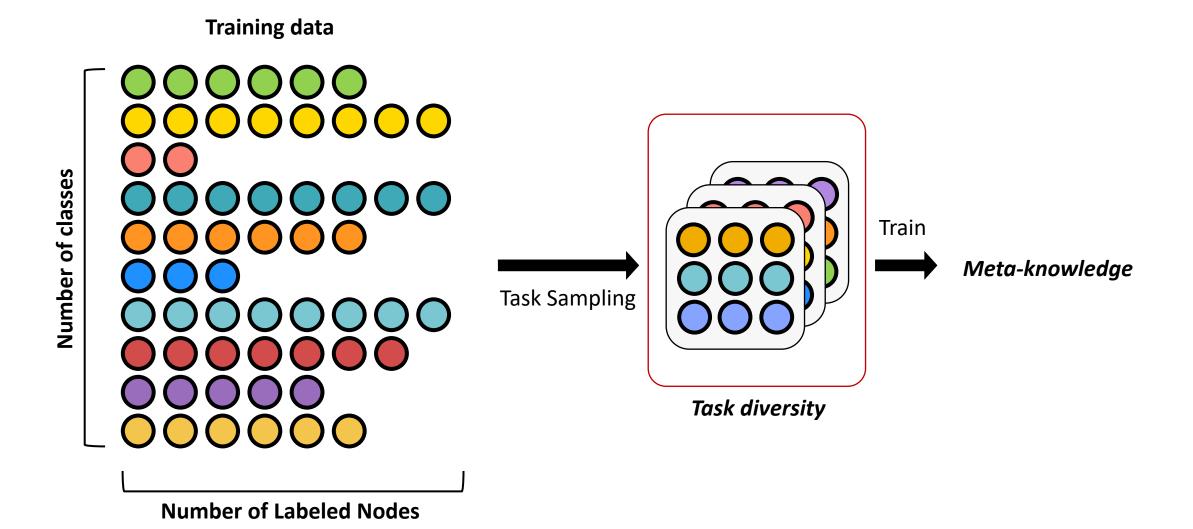


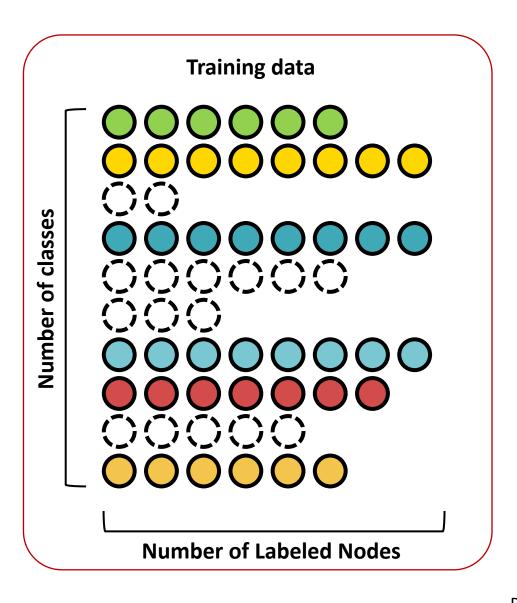


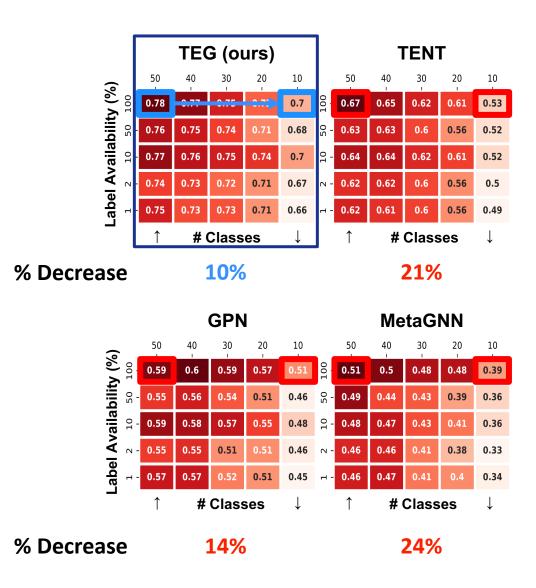
To ensure the strong generalization power of meta-knowledge, a significant number of training tasks are needed!

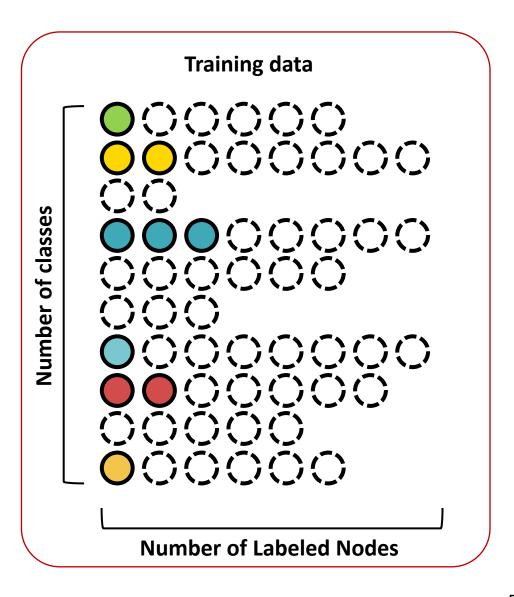


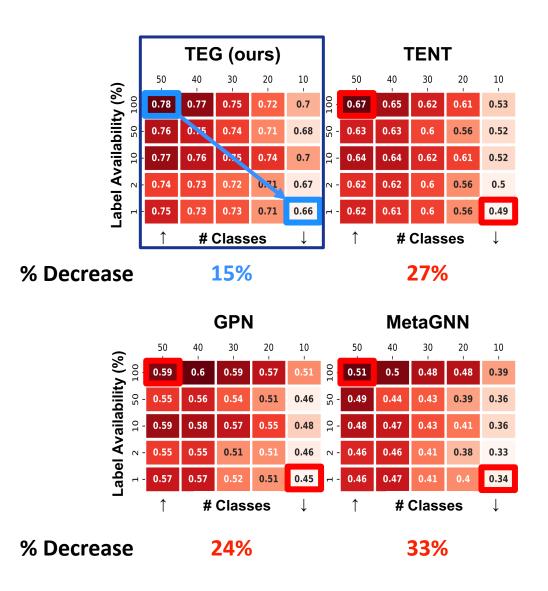


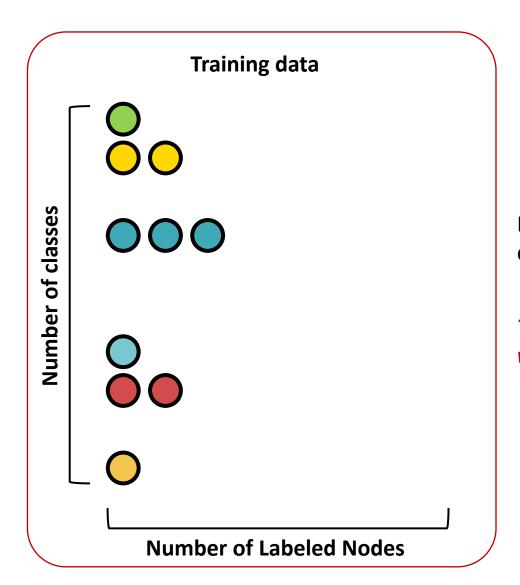






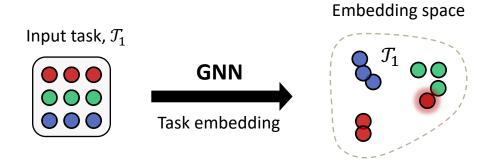


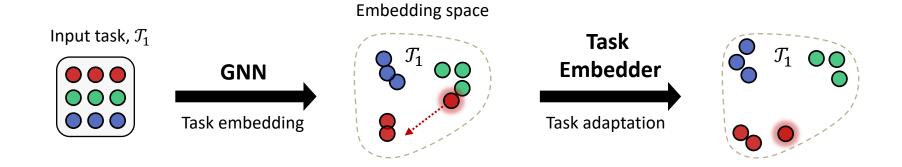


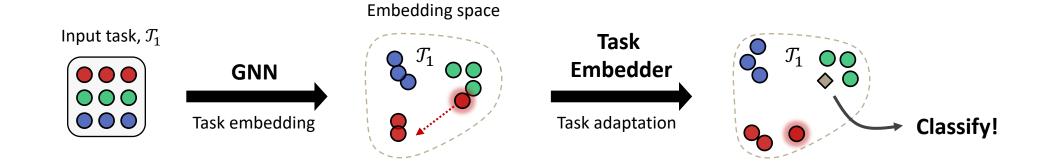


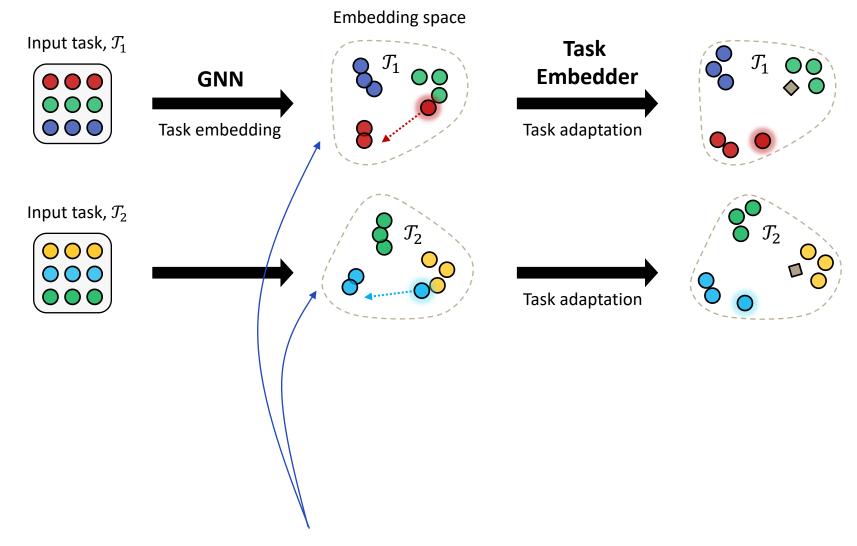
In real-world scenarios, *creating diverse tasks becomes challenging* due to the *high cost of labeling*.

TEG learns highly transferable meta-knowledge with limited diversity of training tasks!

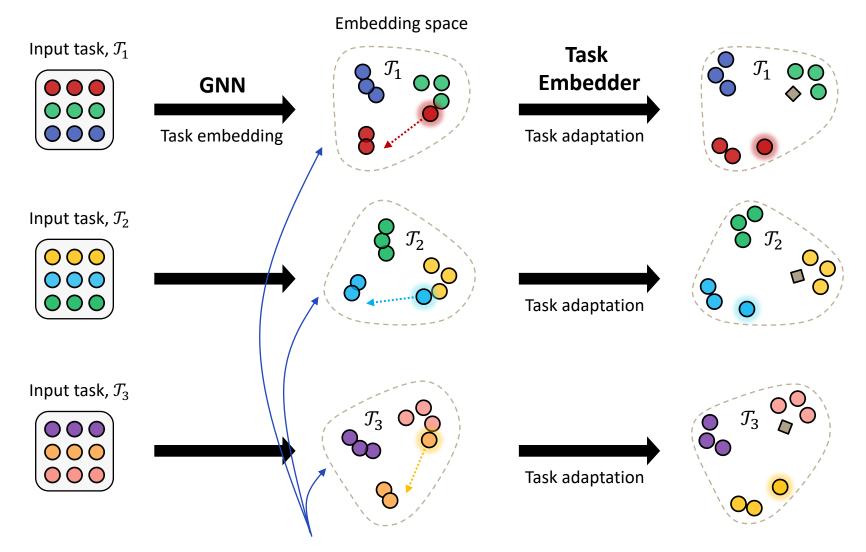




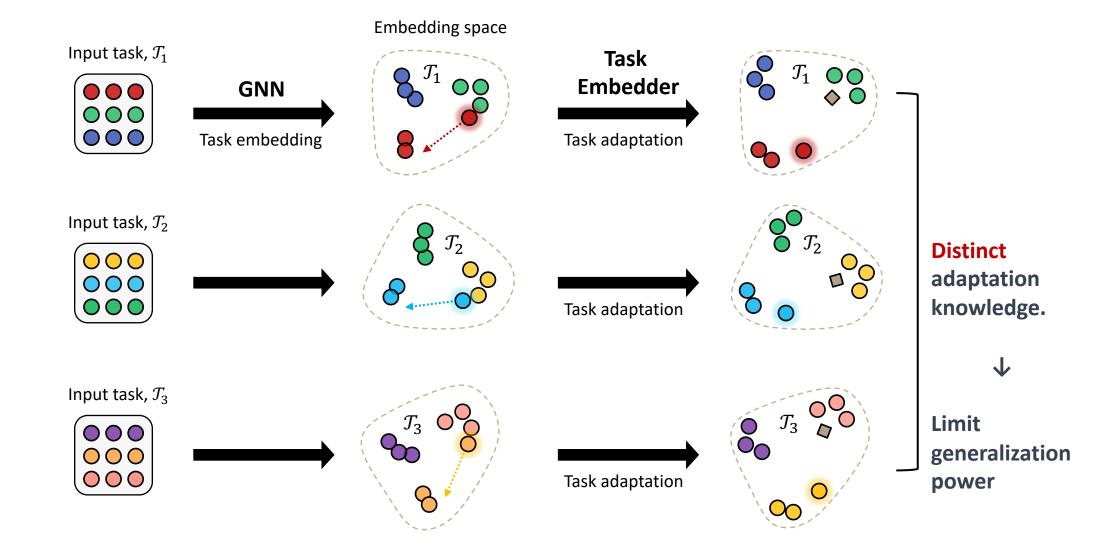


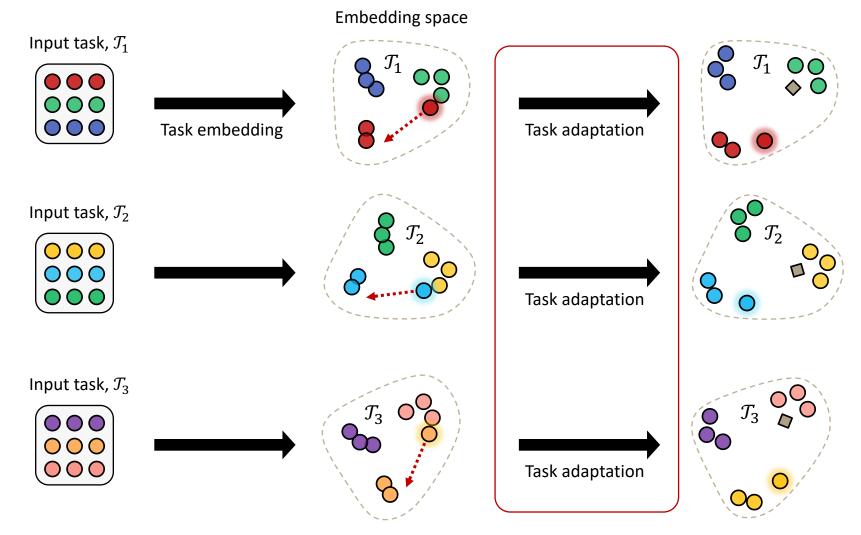


Task-patterns: Relational positions between constituent nodes within the task.



Task-patterns: Relational positions between constituent nodes within the task.

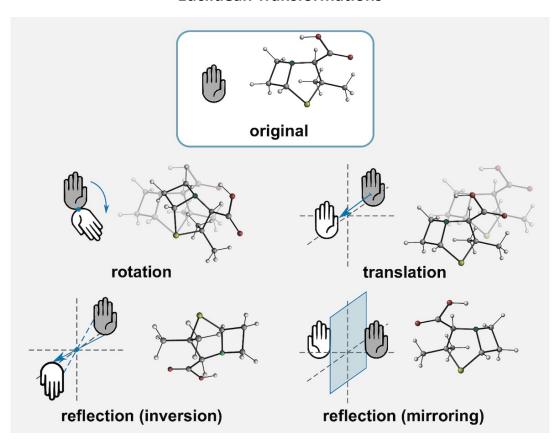




Let's share Task-adaptation Strategy! → How?

EQUIVARIANCE

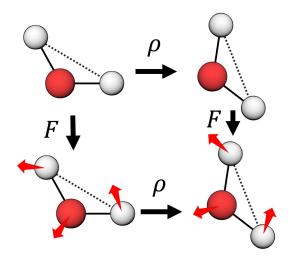
Euclidean Transformations



A function $F: X \to Y$ is **equivariant** to a transformation ρ It satisfies:

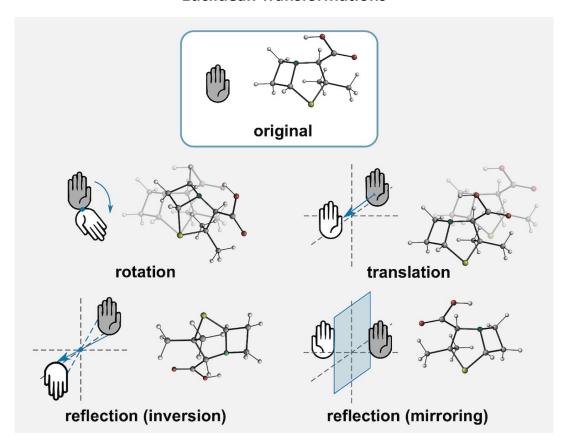
$$F \circ \rho(x) = \rho \circ F(x)$$

The equation says that applying ρ on the input has the same effect as applying it to the output.



EQUIVARIANCE

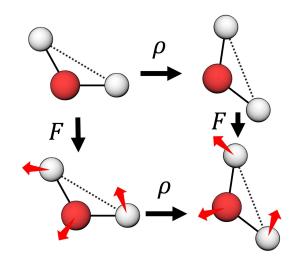
Euclidean Transformations



A function $F: X \to Y$ is **equivariant** to a transformation ρ It satisfies:

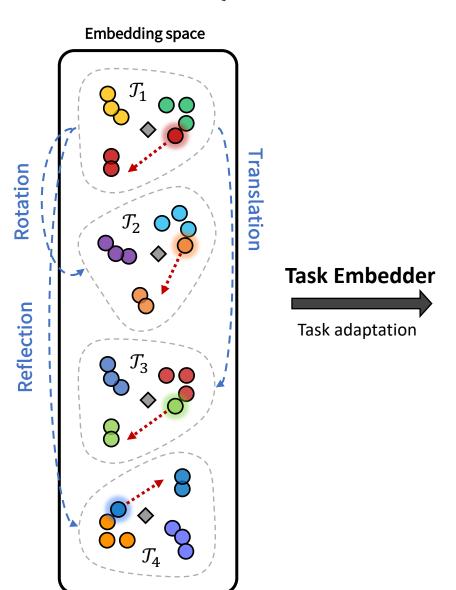
$$F \circ \rho(x) = \rho \circ F(x)$$

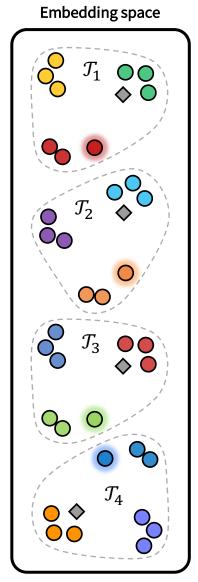
The equation says that applying ρ on the input has the same effect as applying it to the output.



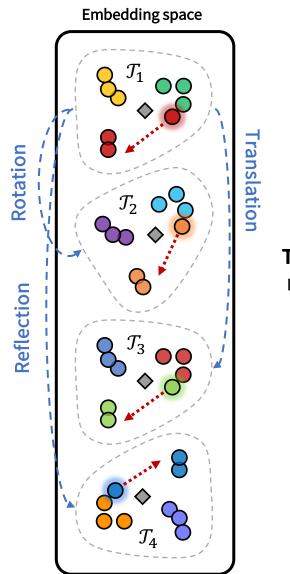
A function $F: X \to Y$ is **invariant** to a transformation ρ It satisfies:

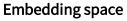
$$F \circ \rho(x) = F(x)$$

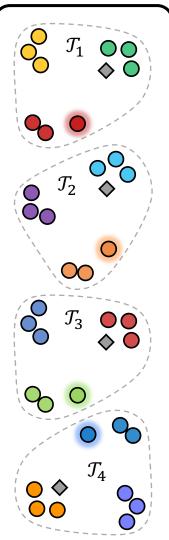




Task adaptation strategy exhibits equivariance to transformations of the task embedding.





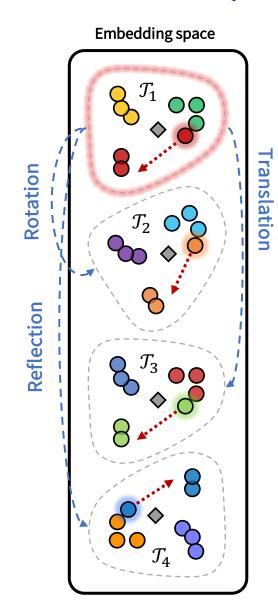


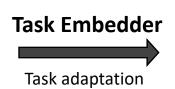
Task adaptation strategy exhibits equivariance to transformations of the task embedding.

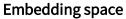
Share adaptation strategies for tasks with same/similar patterns.

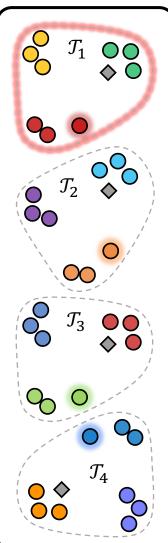
→ Task-Equivariance

The task embedder is <u>equivariant to Euclidean</u> transformation of embeddings of set of nodes within a task.









Task adaptation strategy exhibits equivariance to transformations of the task embedding.

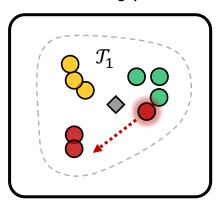
Share adaptation strategies for tasks with same/similar patterns. → *Task-Equivariance*

Well-generalized meta-knowledge with low diverse training tasks.

 \rightarrow Our task embedder can solve \mathcal{T}_2 , \mathcal{T}_3 , \mathcal{T}_4 if it can handle \mathcal{T}_1 .

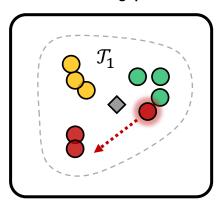
 \mathcal{T}_1 is all we need for training data.

Embedding space



Considering only the relative embedding within a single task does not provide enough information to distinguish the shining red node from the green nodes.

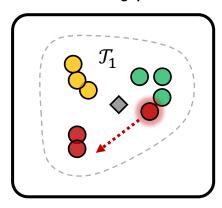
Embedding space



Considering only the relative embedding within a single task does not provide enough information to distinguish the shining red node from the green nodes.

→ We need the **global information from the entire graph for each node**.

Embedding space



Considering only the relative embedding within a single task does not provide enough information to distinguish the shining red node from the green nodes.

→ We need the global information from the entire graph for each node.

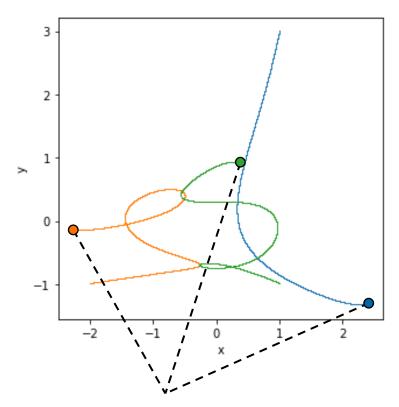
→ We generate structural features as global information, which remain constant across all meta-tasks!

e.g., node2vec, DeepWalk, Shortest Path Distance, Centrality ···

→ **Structural features are constant** across all meta-tasks!

MIMICKING THE N-BODY PROBLEM

N-body problem

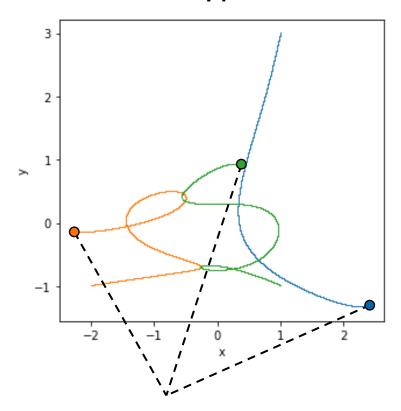


Each instance has its own **1**) *properties* (constant) and **2**) *coordinates* (relative)

Equivariance is needed.

MIMICKING THE N-BODY PROBLEM

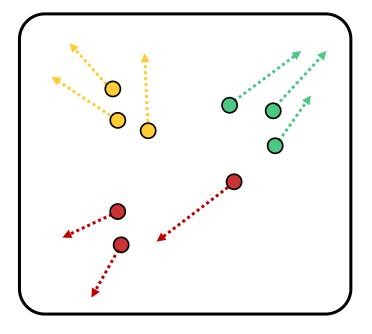
N-body problem



Each instance has its own **1)** *properties* (constant) and **2)** *coordinates* (relative)

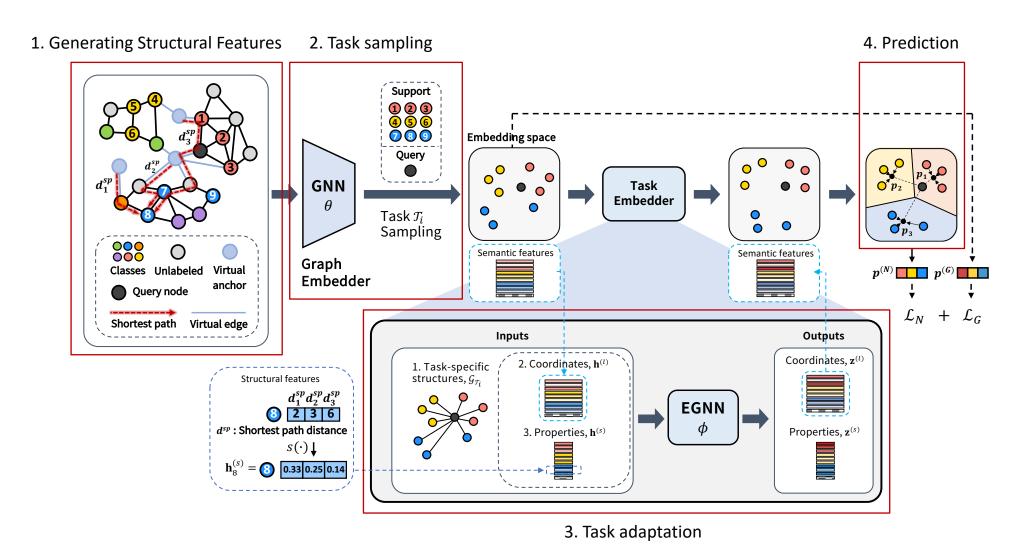
Equivariance is needed.

Few-shot Problem



- 1) structural features (constant)
 - 2) embeddings (relative)

Equivariance is needed.

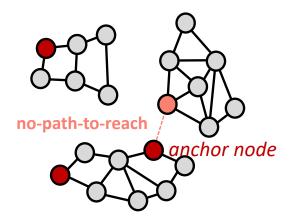


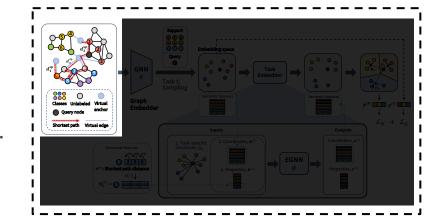
30

Generating Structural Features (h^s)

Real-world graph datasets tend to consist of multiple connected components.

→ Existing path-based structural features (such as SPD, DeepWalk ...) may be hindered by *no-path-to-reach* problem.

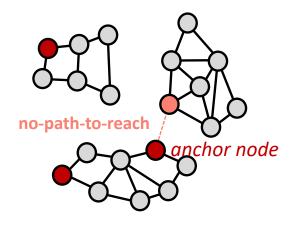




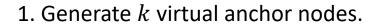
Generating Structural Features (h^s)

Real-world graph datasets tend to consist of multiple connected components.

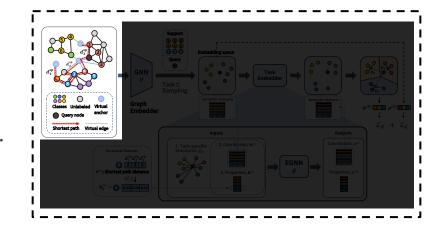
→ Existing path-based structural features (such as SPD, DeepWalk ...) may be hindered by *no-path-to-reach* problem.



I anchor node



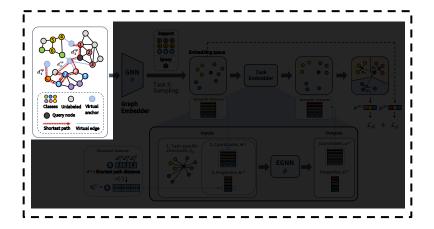
$$\mathcal{V}_{\alpha} = \{v_{\alpha_1}, \dots, v_{\alpha_k}\}$$

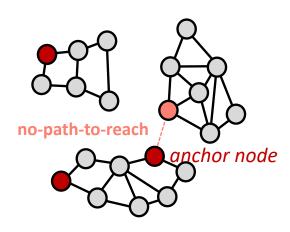


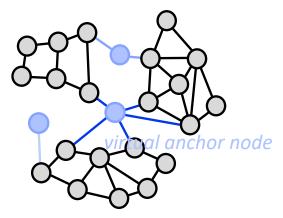
Generating Structural Features (h^s)

Real-world graph datasets tend to consist of multiple connected components.

→ Existing path-based structural features (such as SPD, DeepWalk ...) may be hindered by *no-path-to-reach* problem.







1. Generate k virtual anchor nodes.

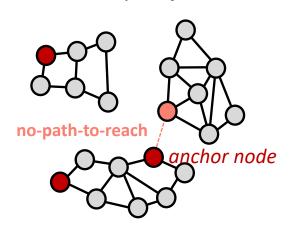
$$\mathcal{V}_{\alpha} = \{v_{\alpha_1}, \dots, v_{\alpha_k}\}$$

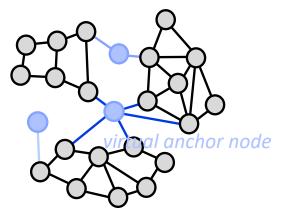
- 2. Vary the degrees of connectivity for each virtual anchor node.
 - a) High degrees
 - → alleviate the no-path-to-reach problem
 - b) Low degrees
 - → has high certainty of structural information.

Generating Structural Features (h^s)

Real-world graph datasets tend to consist of multiple connected components.

→ Existing path-based structural features (such as SPD, DeepWalk ...) may be hindered by *no-path-to-reach* problem.





1. Generate k virtual anchor nodes.

$$\mathcal{V}_{\alpha} = \{v_{\alpha_1}, \dots, v_{\alpha_k}\}$$

- 2. Vary the degrees of connectivity for each virtual anchor node.
 - a) High degrees
 - → alleviate the no-path-to-reach problem
 - b) Low degrees
 - → has high certainty of structural information.
- 3. Generate structural features based on the SPD from each k virtual node.

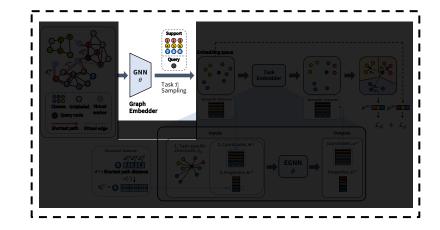
$$\mathbf{H}_{v}^{(s)} = (s(v, v_{\alpha_1}), s(v, v_{\alpha_2}), \dots, s(v, v_{\alpha_k}))$$

where $s(v, u) = 1/(d^{sp}(v, u) + 1)$ and $d^{sp}(u, v)$ is the SPD between node v and u

Generating Semantic Features (h^l)

In order to reflect the semantic context of the entire graph, we employ GCNs as a graph embedder to obtain the semantic feature $\mathbf{H}^{(l)}$

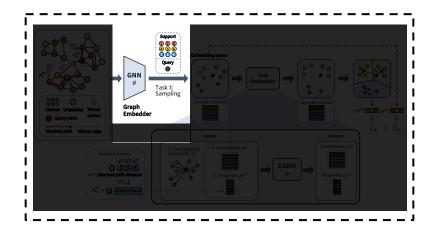
$$\mathbf{H}^{(l)} = \mathrm{GNN}_{\theta}(\mathbf{X}, \mathbf{A})$$



Generating Semantic Features (h^l)

In order to reflect the semantic context of the entire graph, we employ GCNs as a graph embedder to obtain the semantic feature $\mathbf{H}^{(l)}$

$$\mathbf{H}^{(l)} = \mathrm{GNN}_{\theta}(\mathbf{X}, \mathbf{A})$$

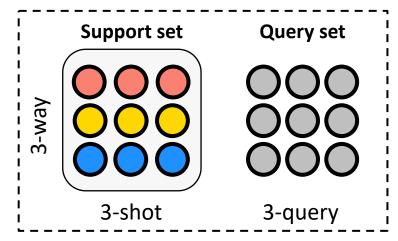


Task Sampling

In the case of N-way K-shot, 1) K support nodes 2) M query nodes are samples for each class.

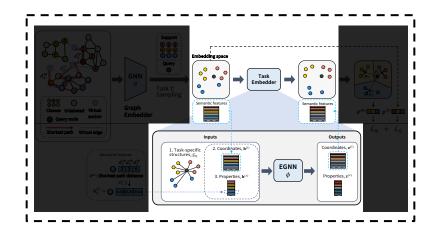
 $\rightarrow N \times (N + M)$ nodes for each task.

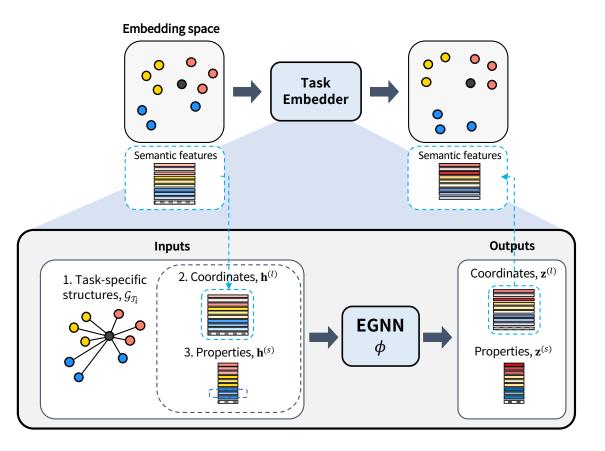
e.g., 3-way 3-shot 3-query task



Task Adaptation

Utilizing the Equivariant Graph Neural Networks (EGNN*), the task embedder plays adaptation to the given task.





In order to capture the relations between nodes within the task, we use following as inputs:

- **1.** Task-specific graph structures, $\mathcal{G}_{\mathcal{T}_i}$
- **2.** Coordinates of each node in the embedding space.
 - = Semantic features, $\mathbf{h}^{(l)}$
- **3.** Constant properties of each node across all tasks.
 - = Structural features, $\mathbf{h}^{(s)}$

^{*} Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling. "E(n) equivariant graph neural networks." International conference on machine learning. PMLR, 2021.

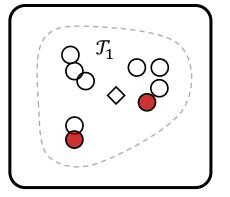
Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, ||\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}||^2)$$

where λ : the index of the layer, ϕ_m : $\mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

Embedding space



O: Support node

♦ : Query node

Task Adaptation

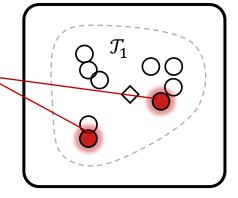
1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, ||\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}||^2)$$

where λ : the index of the layer, ϕ_m : $\mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

Embedding space

Constant properties of each node. **◆**



O: Support node

♦ : Query node

Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2)$$

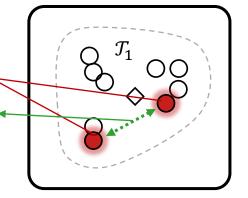
Constant properties of each node. •

Relative distance between two nodes.

where λ : the index of the lay \rightarrow inv. $d_s+1 \rightarrow \mathbb{R}^{\ell} \rightarrow$ inv.

→ Transformation (i.e., translation, rotation, reflection) invariant.

Embedding space



O: Support node

♦ : Query node

Task Adaptation

1. Generate a message m_{ij} from node j to i.

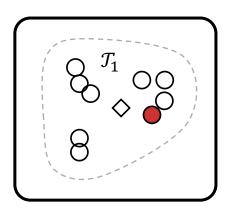
$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection) invariant.}$$

where λ : the index of the layer, ϕ_m : $\mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates.

$$\mathbf{h}_{i}^{(l),\lambda+1} = \mathbf{h}_{i}^{(l),\lambda} + \frac{1}{C} \sum_{j \neq i} (\mathbf{h}_{i}^{(l),\lambda} - \mathbf{h}_{j}^{(l),\lambda}) \phi_{l}(\mathbf{m}_{ij})$$

where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.



Task Adaptation

1. Generate a message m_{ij} from node j to i.

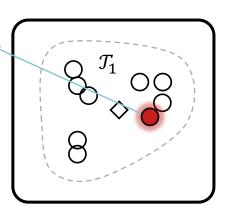
$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection) invariant.}$$

where λ : the index of the layer, ϕ_m : $\mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates. Initial position of target node.

$$\mathbf{h}_{i}^{(l),\lambda+1} = \mathbf{h}_{i}^{(l),\lambda} + \frac{1}{C} \sum_{i \neq i} (\mathbf{h}_{i}^{(l),\lambda} - \mathbf{h}_{j}^{(l),\lambda}) \phi_{l}(\mathbf{m}_{ij})$$

where $\phi_l:\mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.



Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection) invariant.}$$

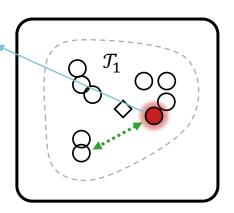
where λ : the index of the layer, ϕ_m : $\mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates. Initial position of target node.

$$\mathbf{h}_{i}^{(l),\lambda+1} = \mathbf{h}_{i}^{(l),\lambda} + \frac{1}{C} \sum_{i \neq l} (\mathbf{h}_{i}^{(l),\lambda} - \mathbf{h}_{j}^{(l),\lambda}) \phi_{l}(\mathbf{m}_{ij})$$

Relative position difference.

where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.



Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection) invariant.}$$

where λ : the index of the layer, ϕ_m : $\mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

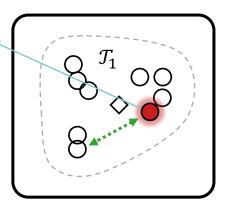
2. With the generated messages \mathbf{m}_{ij} , update coordinates.

$$\mathbf{h}_{i}^{(l),\lambda+1} = \mathbf{h}_{i}^{(l),\lambda} + \frac{1}{C} \sum_{i \neq l} (\mathbf{h}_{i}^{(l),\lambda} - \mathbf{h}_{j}^{(l),\lambda}) \phi_{l}(\mathbf{m}_{ij})$$

where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.

Initial **position** of target node.

Weighted (by message m_{ij}) Relative position difference.



Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection)}$$
 invariant.

where λ : the index of the layer, ϕ_m : $\mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates.

$$\mathbf{h}_{i}^{(l),\lambda+1} = \mathbf{h}_{i}^{(l),\lambda} + \frac{1}{C} \sum_{j \neq i} (\mathbf{h}_{i}^{(l),\lambda} - \mathbf{h}_{j}^{(l),\lambda}) \phi_{l}(\mathbf{m}_{ij})$$

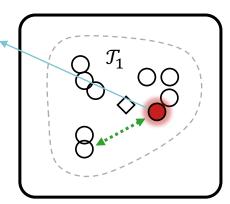
where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, \rightarrow inv. \rightarrow equi. \rightarrow inv.

Initial **position** of target node.

Weighted (by message m_{ij}) Relative position difference.

k, excluding node i.

→ Transformation equivariant.



Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection)}$$
 invariant.

where λ : the index of the layer, $\phi_m: \mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates.

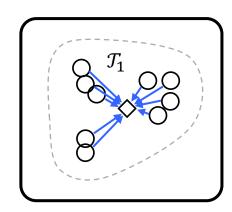
$$\mathbf{h}_i^{(l),\lambda+1} = \mathbf{h}_i^{(l),\lambda} + \frac{1}{C} \sum_{i \neq i} (\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}) \phi_l(\mathbf{m}_{ij}) \quad \Rightarrow \text{Transformation equivariant}.$$

where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties.

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij}$$
$$\mathbf{h}_{i}^{(s),\lambda+1} = \phi_{s}(\mathbf{h}_{i}^{(s),\lambda}, \mathbf{m}_{i})$$

where
$$\phi_{\scriptscriptstyle S}:\mathbb{R}^{d_l+d_{\scriptscriptstyle S}} o\mathbb{R}^{d_{\scriptscriptstyle S}}$$



Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection) invariant.}$$

where λ : the index of the layer, $\phi_m: \mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates.

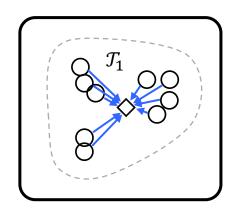
$$\mathbf{h}_i^{(l),\lambda+1} = \mathbf{h}_i^{(l),\lambda} + \frac{1}{C} \sum_{j \neq i} (\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}) \phi_l(\mathbf{m}_{ij}) \quad \Rightarrow \text{Transformation equivariant.}$$

where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties.

$$\mathbf{m}_{i} = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij}$$
$$\mathbf{h}_{i}^{(s),\lambda+1} = \phi_{s}(\mathbf{h}_{i}^{(s),\lambda}, \mathbf{m}_{i})$$

where
$$\phi_{\scriptscriptstyle S}:\mathbb{R}^{d_l+d_{\scriptscriptstyle S}} o\mathbb{R}^{d_{\scriptscriptstyle S}}$$



Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection)}$$
 invariant.

where λ : the index of the layer, $\phi_m: \mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates.

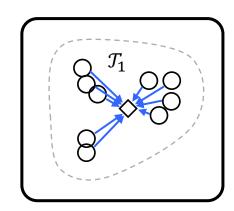
$$\mathbf{h}_i^{(l),\lambda+1} = \mathbf{h}_i^{(l),\lambda} + \frac{1}{C} \sum_{j \neq i} (\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}) \phi_l(\mathbf{m}_{ij})$$
 \rightarrow Transformation **equivariant**.

where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties.

$$\mathbf{m}_i = \underbrace{\sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij}}_{j \in \mathcal{N}(i)} \rightarrow \mathbf{inv.}$$

$$\mathbf{h}_i^{(s),\lambda+1} = \phi_s(\mathbf{h}_i^{(s),\lambda}, \mathbf{m}_i) \qquad \rightarrow \mathbf{Transformation\ invariant.}$$
 where $\phi_s: \mathbb{R}^{d_l+d_s} \rightarrow \mathbb{R}^{d_s} \rightarrow \mathbf{inv.}$



Task Adaptation

1. Generate a message m_{ij} from node j to i.

$$\mathbf{m}_{ij} = \phi_m(\mathbf{h}_i^{(s),\lambda}, \mathbf{h}_j^{(s),\lambda}, \|\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}\|^2) \rightarrow \text{Transformation (i.e., translation, rotation, reflection) invariant.}$$

where λ : the index of the layer, $\phi_m: \mathbb{R}^{2d_S+1} \to \mathbb{R}^{d_l}$.

2. With the generated messages \mathbf{m}_{ij} , update coordinates.

$$\mathbf{h}_i^{(l),\lambda+1} = \mathbf{h}_i^{(l),\lambda} + \frac{1}{C} \sum_{i \neq i} (\mathbf{h}_i^{(l),\lambda} - \mathbf{h}_j^{(l),\lambda}) \phi_l(\mathbf{m}_{ij}) \quad \Rightarrow \text{Transformation equivariant}.$$

where $\phi_l: \mathbb{R}^{d_l} \to \mathbb{R}^1$, C: the number of nodes within a meta-task, excluding node i.

3. Aggregate messages, then update properties.

$$\mathbf{m}_i = \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij}$$

$$\mathbf{h}_{i}^{(s),\lambda+1} = \phi_{s}(\mathbf{h}_{i}^{(s),\lambda},\mathbf{m}_{i})$$
 \rightarrow Transformation invariant.

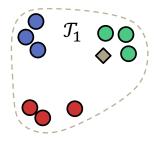
where $\phi_{\scriptscriptstyle S}:\mathbb{R}^{d_l+d_{\scriptscriptstyle S}} o\mathbb{R}^{d_{\scriptscriptstyle S}}$

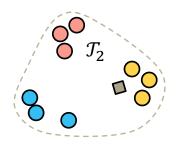
The task embedder plays an important role where adaptation is made equivariantly with respect to the transformation of semantic features.

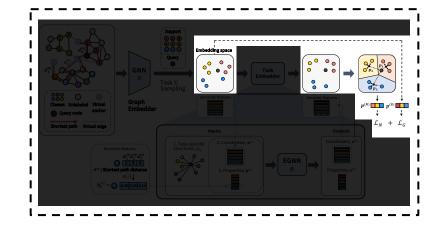
Prediction

The task adaptation strategies have to be equivariant, but we need to provide the same prediction(logits) for different tasks that have same task-patterns.

→ The metric of prediction should be invariant to the transformation.



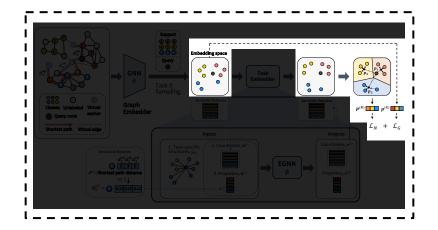


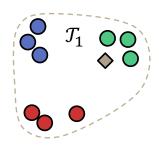


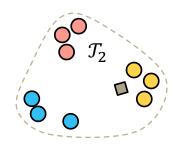
Prediction

The task adaptation strategies have to be equivariant, but we need to provide the same prediction(logits) for different tasks that have same task-patterns.

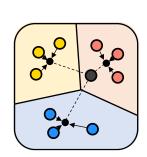
→ The metric of prediction should be invariant to the transformation.







We adopt ProtoNet* based prediction, which are using squared Euclidean distance, which an invariant metric to transformations.



$$\mathbf{p}_c^{(N)} = \frac{1}{K} \sum_{i=1}^K \mathbf{z}_{c,i}^{(l)} \quad \text{where } \mathbf{z}_{c,i}^{(l)} : \text{final coordinates of the } i\text{-th support nodes, which belongs to class } c.$$

$$p(c|\mathbf{z}_{qry}^{(l)}) = \frac{\exp(-d(\mathbf{z}_{qry}^{(l)}, \mathbf{p}_{c}^{(N)}))}{\sum_{c'=1}^{N} \exp(-d(\mathbf{z}_{qry}^{(l)}, \mathbf{p}_{c'}^{(N)}))} \quad \text{where } d(\cdot, \cdot) : \text{squared Euclidean distance.}$$

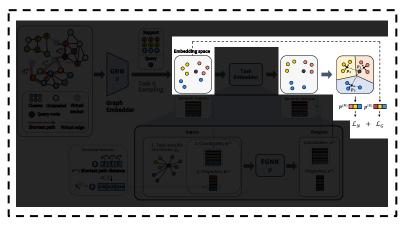
$$\text{Then we classify the query node by finding the class with the highest probability.}$$

$$\mathcal{L}_N = \sum_q^M \sum_c^N - \mathbb{I}(y_q = c) \log(p(c|\mathbf{z}_q^{(l)}))$$

where y_q : ground truth label of the q-th query node, $\mathbb{I}(\cdot)$: indicator function.

Prediction

We also calculate the loss using the semantic features before task adaptation, which helps the graph embedder learn more distinguishable semantic features between the classes.



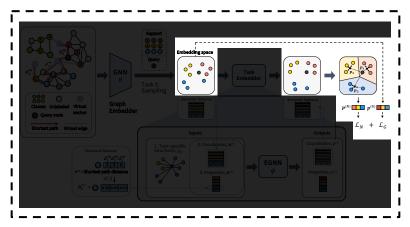
$$\mathbf{p}_c^{(G)} = \frac{1}{K} \sum_{i=1}^K \mathbf{h}_{c,i}^{(l)} \qquad \text{where } \mathbf{h}_{c,i}^{(l)} : \text{final coordinates of the } i\text{-th support nodes, which belongs to class } c.$$

$$p(c|\mathbf{h}_{qry}^{(l)}) = \frac{\exp(-d(\mathbf{h}_{qry}^{(l)}, \mathbf{p}_c^{(G)}))}{\sum_{c'=1}^N \exp(-d(\mathbf{h}_{qry}^{(l)}, \mathbf{p}_{c'}^{(G)}))} \quad \text{where } d(\cdot, \cdot) : \text{squared Euclidean distance}.$$

$$\mathcal{L}_G = \sum_q^M \sum_c^N - \mathbb{I}(y_q = c) \log(p(c|\mathbf{h}_q^{(l)})) \quad \text{where } y_q : \text{ground truth label of the } q\text{-th query node, } \mathbb{I}(\cdot) : \text{indicator function.}$$

Prediction

We also calculate the loss using the semantic features before task adaptation, which helps the graph embedder learn more distinguishable semantic features between the classes.



$$\mathbf{p}_c^{(G)} = \frac{1}{K} \sum_{i=1}^K \mathbf{h}_{c,i}^{(l)} \qquad \text{where } \mathbf{h}_{c,i}^{(l)} : \text{final coordinates of the } i\text{-th support nodes, which belongs to class } c.$$

$$p(c|\mathbf{h}_{qry}^{(l)}) = \frac{\exp(-d(\mathbf{h}_{qry}^{(l)}, \mathbf{p}_c^{(G)}))}{\sum_{c'=1}^{N} \exp(-d(\mathbf{h}_{qry}^{(l)}, \mathbf{p}_{c'}^{(G)}))} \quad \text{where } d(\cdot, \cdot) : \text{squared Euclidean distance}.$$

$$\mathcal{L}_G = \sum_q^M \sum_c^N - \mathbb{I}(y_q = c) \log(p(c|\mathbf{h}_q^{(l)})) \quad \text{where } y_q : \text{ground truth label of the } q\text{-th query node, } \mathbb{I}(\cdot) : \text{indicator function.}$$

Final Loss Function

$$\mathcal{L}(\theta,\phi) = \gamma \frac{\mathcal{L}_N}{\mathcal{L}_N} + (1-\gamma) \frac{\mathcal{L}_G}{\mathcal{L}_G}$$

where γ : tunable hyperparameter

Task embedder

Graph embedder

Main Results

Dataset	Cora-full					Amazon Clothing						
Method	5way 1shot	5way 3shot	5way 5shot	10way 1shot	10way 3shot	10way 5shot	5way 1shot	5way 3shot	5way 5shot	10way 1shot	10way 3shot	10way 5shot
MAML	24.74 ± 3.20	28.32 ± 1.83	30.13 ± 4.33	10.11 ± 0.49	10.98 ± 1.02	12.89 ± 1.78	45.60 ± 7.16	58.82 ± 5.52	64.88 ± 1.89	29.00 ± 1.86	39.52 ± 2.99	43.98 ± 2.27
ProtoNet	31.47 ± 1.65	39.49 ± 1.46	44.98 ± 1.08	19.75 ± 0.71	28.16 ± 1.73	31.34 ± 0.91	42.37 ± 2.42	57.74 ± 1.09	62.83 ± 3.10	34.51 ± 2.13	49.16 ± 2.72	54.16 ± 1.62
Meta-GNN	51.57 ± 2.83	58.10 ± 2.57	62.66 ± 5.58	29.20 ± 2.36	32.10 ± 4.60	41.36 ± 2.25	70.42 ± 1.66	76.72 ± 2.65	76.27 ± 1.87	51.05 ± 1.53	56.70 ± 2.22	57.54 ± 3.71
G-Meta	45.71 ± 1.97	54.64 ± 2.24	58.68 ± 5.16	32.90 ± 0.84	46.60 ± 0.62	51.58 ± 1.23	61.71 ± 1.67	67.94 ± 1.99	73.28 ± 1.84	50.33 ± 1.62	62.07 ± 1.12	67.23 ± 1.79
GPN	51.09 ± 3.55	63.78 ± 0.66	65.89 ± 2.53	40.24 ± 1.94	50.49 ± 2.34	53.75 ± 2.13	61.39 ± 1.97	73.42 ± 2.77	76.40 ± 2.37	51.32 ± 1.30	64.58 ± 3.04	69.03 ± 0.98
TENT	54.19 ± 2.23	65.20 ± 1.99	68.77 ± 2.42	37.72 ± 2.08	48.76 ± 1.95	53.95 ± 0.81	75.52 ± 1.06	85.21 ± 0.79	87.15 ± 1.13	60.70 ± 1.66	72.44 ± 1.81	77.53 ± 0.76
TEG	60.27 ± 1.93	74.24 ± 1.03	76.37 ± 1.92	45.26 ± 1.03	60.00 ± 1.16	64.56 ± 1.04	80.77 ± 3.32	90.14 ± 0.97	90.18 ± 0.95	69.12 ± 1.75	79.42 ± 1.34	83.27 ± 0.81
	Amazon Electronics											
Dataset			Amazon E	Electronics					DB	BLP		
Dataset Method	5way 1shot	5way 3shot	Amazon E 5way 5shot	Electronics 10way 1shot	10way 3shot	10way 5shot	5way 1shot	5way 3shot	DB 5way 5shot	BLP 10way 1shot	10way 3shot	10way 5shot
	5way 1shot 41.57 ± 6.32	5way 3shot 54.88 ± 2.84		 I	10way 3shot 40.75 ± 3.20	10way 5shot 41.98 ± 5.38	5way 1shot 31.57 ± 3.57	5way 3shot 43.52 ± 5.50		1	10way 3shot 25.64 ± 2.24	10way 5shot 25.66 ± 5.12
Method	<u> </u>	•	5way 5shot	10way 1shot	•	,	1	•	5way 5shot	10way 1shot	•	
Method MAML	41.57 ± 6.32	54.88 ± 2.84	5way 5shot 62.90 ± 3.81	10way 1shot 28.75 ± 1.70	40.75 ± 3.20	41.98 ± 5.38	31.57 ± 3.57	43.52 ± 5.50	5way 5shot 51.09 ± 5.68	10way 1shot 16.05 ± 2.27	25.64 ± 2.24	25.66 ± 5.12
Method MAML ProtoNet	41.57 ± 6.32 42.38 ± 1.62	54.88 ± 2.84 52.94 ± 1.31	5way 5shot 62.90 ± 3.81 59.34 ± 2.06	10way 1shot 28.75 ± 1.70 32.05 ± 3.23	40.75 ± 3.20 43.26 ± 1.72	41.98 ± 5.38 49.49 ± 3.01	31.57 ± 3.57 35.12 ± 0.95	43.52 ± 5.50 49.27 ± 2.70	5way 5shot 51.09 ± 5.68 53.65 ± 1.62	10way 1shot 16.05 ± 2.27 24.30 ± 0.76	25.64 ± 2.24 39.42 ± 2.03	25.66 ± 5.12 44.06 ± 1.57
Method MAML ProtoNet Meta-GNN	41.57 ± 6.32 42.38 ± 1.62 57.23 ± 1.54	54.88 ± 2.84 52.94 ± 1.31 66.19 ± 2.40	5way 5shot 62.90 ± 3.81 59.34 ± 2.06 70.08 ± 2.14	10way 1shot 28.75 ± 1.70 32.05 ± 3.23 41.22 ± 2.85	40.75 ± 3.20 43.26 ± 1.72 48.94 ± 1.87	41.98 ± 5.38 49.49 ± 3.01 53.55 ± 1.51	31.57 ± 3.57 35.12 ± 0.95 63.07 ± 1.49	43.52 ± 5.50 49.27 ± 2.70 71.76 ± 2.17	5way 5shot 51.09 ± 5.68 53.65 ± 1.62 74.70 ± 2.09	10way 1shot 16.05 ± 2.27 24.30 ± 0.76 45.74 ± 1.68	25.64 ± 2.24 39.42 ± 2.03 53.34 ± 2.58	25.66 ± 5.12 44.06 ± 1.57 56.14 ± 0.88
Method MAML ProtoNet Meta-GNN G-Meta	41.57 ± 6.32 42.38 ± 1.62 57.23 ± 1.54 47.14 ± 1.24	54.88 ± 2.84 52.94 ± 1.31 66.19 ± 2.40 59.75 ± 1.29	5way 5shot 62.90 ± 3.81 59.34 ± 2.06 70.08 ± 2.14 62.06 ± 1.98	10way 1shot 28.75 ± 1.70 32.05 ± 3.23 41.22 ± 2.85 41.22 ± 1.86	40.75 ± 3.20 43.26 ± 1.72 48.94 ± 1.87 48.64 ± 1.80	41.98 ± 5.38 49.49 ± 3.01 53.55 ± 1.51 54.49 ± 2.37	31.57 ± 3.57 35.12 ± 0.95 63.07 ± 1.49 57.98 ± 1.98	43.52 ± 5.50 49.27 ± 2.70 71.76 ± 2.17 68.19 ± 1.40	5way 5shot 51.09 ± 5.68 53.65 ± 1.62 74.70 ± 2.09 73.11 ± 0.81	10way 1shot 16.05 ± 2.27 24.30 ± 0.76 45.74 ± 1.68 47.38 ± 2.72	25.64 ± 2.24 39.42 ± 2.03 53.34 ± 2.58 60.83 ± 1.35	25.66 ± 5.12 44.06 ± 1.57 56.14 ± 0.88 66.12 ± 1.79

In a traditional few-shot learning settings (i.e., using sufficient training meta-tasks), TEG outperforms all the baselines.

Impact of Diversity of Meta-Train Tasks

Dataset	Amazon Electronics						Amazon Clothing					
Setting	5	way 5shot		10way 5shot			5way 5shot			10way 5shot		
Class/label Avail.	50%/10%	30%/2%	10%/1%	50%/10%	30%/2%	10%/1%	50%/10%	30%/2%	10%/1%	50%/10%	30%/2%	10%/1%
MAML	58.50	55.10	52.00	44.31	40.48	34.04	58.62	53.30	50.16	38.22	33.70	34.46
ProtoNet	54.93	54.86	47.15	47.75	42.80	33.93	57.78	51.89	46.74	43.21	37.22	37.02
Meta-GNN	68.10	62.45	56.24	47.70	41.23	33.86	75.28	73.73	66.29	54.18	50.83	45.70
G-Meta	58.62	53.30	50.16	38.22	33.70	34.46	58.50	55.10	52.00	44.31	40.48	34.04
GPN	69.68	62.14	55.33	58.66	51.06	45.51	73.06	71.06	70.66	65.25	61.24	60.59
TENT	74.90	70.66	56.16	64.43	60.11	48.46	80.40	77.38	65.15	68.91	63.16	60.46
TEG	83.26	81.84	76.77	75.37	72.61	68.98	88.26	86.72	82.54	80.88	78.76	78.41
Rel Improv.	11.2%	15.8%	36.5%	17.0%	20.8%	42.3%	9.8%	12.1%	16.8%	17.4%	24.7%	29.4%

Our model achieves further performance improvements compared to the baseline methods as the diversity of tasks decreases.

TEG outperforms other models when faced with limited meta-training tasks and has a strong ability to adapt to new tasks with minimal training data, which is common in real-world scenarios.

Effectiveness of *Task-Equivariance*

In order to verify the **generalization ability of TEG achieved by the task-equivariance**, we evaluate the model performance on a set of meta-tasks generated by **transforming the meta-train tasks set**.

Effectiveness of *Task-Equivariance*

In order to verify the **generalization ability of TEG achieved by the task-equivariance**, we evaluate the model performance on a set of meta-tasks generated by **transforming the meta-train tasks set**.

Effectiveness of *Task-Equivariance*

In order to verify the **generalization ability of TEG achieved by the task-equivariance**, we evaluate the model performance on a set of meta-tasks generated by **transforming the meta-train tasks set**.

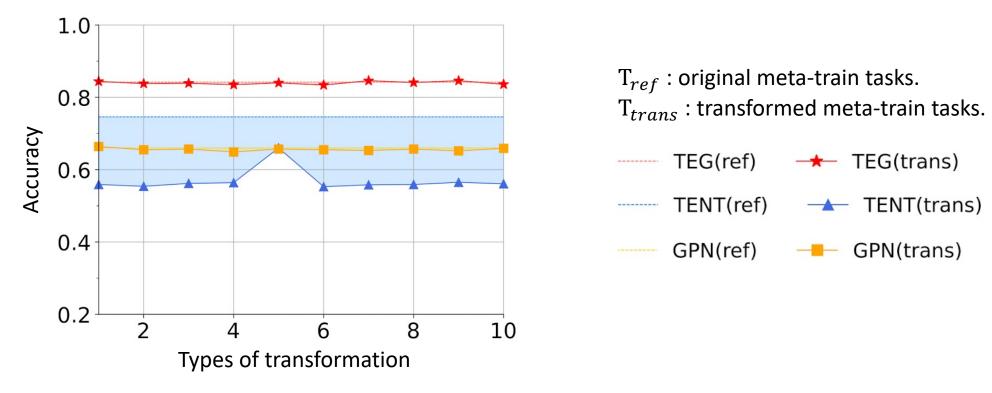
Effectiveness of *Task-Equivariance*

In order to verify the **generalization ability of TEG achieved by the task-equivariance**, we evaluate the model performance on a set of meta-tasks generated by **transforming the meta-train tasks set**.

Effectiveness of *Task-Equivariance*

In order to verify the **generalization ability of TEG achieved by the task-equivariance**, we evaluate the model performance on a set of meta-tasks generated by **transforming the meta-train tasks set**.

1. Train models with meta-train tasks. \rightarrow 2. Transform the meta-train tasks. \rightarrow 3. Re-evaluate the models!

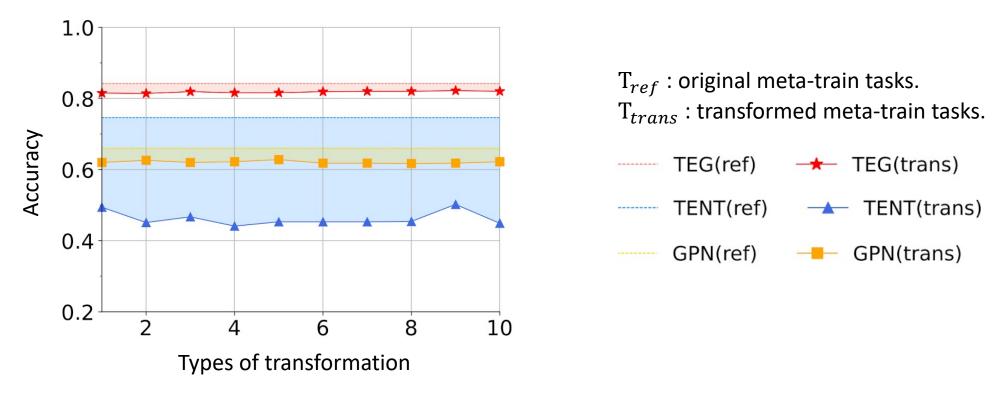


(a) Transformation only → Evaluation for Tasks with same patterns

Effectiveness of *Task-Equivariance*

In order to verify the **generalization ability of TEG achieved by the task-equivariance**, we evaluate the model performance on a set of meta-tasks generated by **transforming the meta-train tasks set**.

1. Train models with meta-train tasks. \rightarrow 2. Transform the meta-train tasks. \rightarrow 3. Re-evaluate the models!

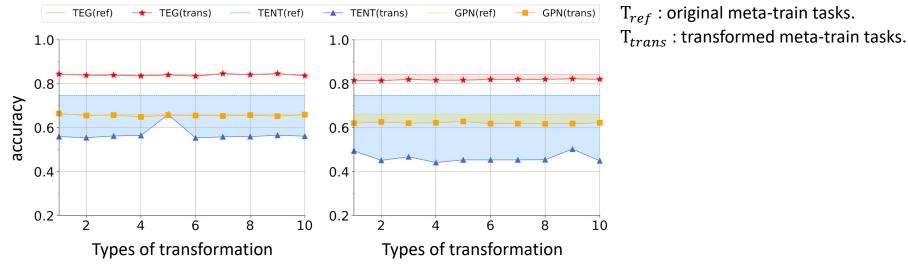


(b) Transformation with noises → Evaluation for Tasks with **similar** patterns

Effectiveness of *Task-Equivariance*

In order to verify the **generalization ability of TEG achieved by the task-equivariance**, we evaluate the model performance on a set of meta-tasks generated by **transforming the meta-train tasks set**.

1. Train models with meta-train tasks. \rightarrow 2. Transform the meta-train tasks. \rightarrow 3. Re-evaluate the models!



(a) Transformation only

(b) Transformation with noises

Tasks with **same** patterns

Tasks with **similar** patterns

Task-equivariance enables the model to **acquire highly transferable meta-knowledge** that can be applied to new tasks with both same and similar task- patterns.

CONCLUSION

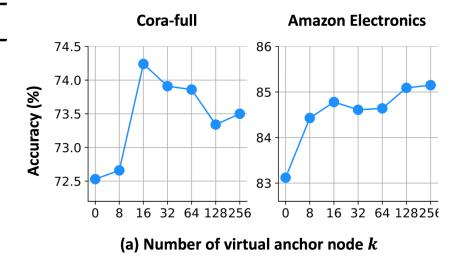
- In meta-learning based few-shot learning, having a sufficient number of training meta-tasks is crucial.
- However, **obtaining diverse training meta-tasks is challenging** in real-world scenarios due to the high cost of labeling.
- To address this, TEG learns highly transferable task-adaptation strategies even from limited training meta-tasks with low diversity.
- We incorporate equivariance into few-shot learning to maximize generalization with the limited tasks.

THANK YOU

APPENDIX

Table 5: Effect of using virtual anchor node for alleviating nopath-to-reach problem. AC and AE denotes "Amazon Clothing" and "Amazon Electronics", respectively.

		with virtual a	anchor nodes	w.o. virtual anchor nodes			
	Dimension	# Zero value	Zero ratio	# Zero value	Zero ratio		
Corafull	$19,793 \times 16$	544	0.002	15,888	0.050		
AC	$24,919 \times 16$	1,280	0.003	66,662	0.167		
AE	$42,318 \times 16$	9,472	0.014	666,935	0.985		
DBLP	$40,672 \times 16$	0	0.000	352	0.001		



APPENDIX

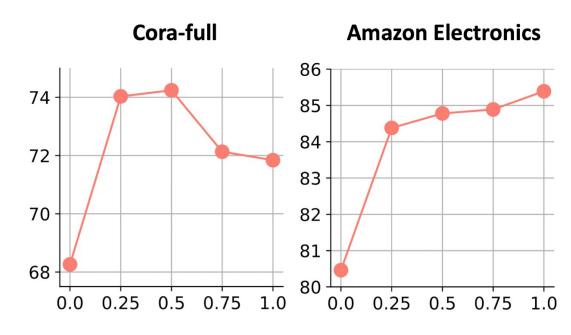
Final Loss Function

$$\mathcal{L}(\theta,\phi) = \gamma \frac{\mathcal{L}_N}{\mathcal{L}_N} + (1-\gamma) \frac{\mathcal{L}_G}{\mathcal{L}_G}$$

where γ : tunable hyperparameter

Task embedder

Graph embedder



(b) Loss weight coefficient γ