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Background
Unsupervised Graph Representation Learning

• Real-world graphs are usually large-scale, and it is difficult to collect labels due to the expensive cost.

• Most recently, the graph contrastive learning (GCL) framework has taken over the mainstream of unsupervised 
graph representation learning (GRL)

• Graph contrastive learning (GCL): pulling together positive samples and pushing apart negative samples.

GRACE, ICML’20 GCA, WWW’21

Figure: Deep Graph Contrastive Representation Learning, ICML’20
Figure: Graph Contrastive Learning with Adaptive Augmentation, WWW’21



4

Background
Adversarial Attacks on Graph Structures
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Leads to the requirements of robust graph representation learning methods

• Graph Neural Networks are vulnerable to adversarial attacks on graph structures.

• Unsupervised GRL models are also vulnerable to such attacks.

Figure: Adversarial Attacks and Defenses: Frontiers, Advances and Practice, KDD’20 tutorial
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Motivation
Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

A graph with the worst-case attack 
maximizing contrastive loss 

Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022

Contrastive loss

Formulation of the adversarial attack in GCL models

Perturbation budgets

• Goal: to find the optimal edges and node feature perturbations for the 𝐀!, 𝐗! that maximally increase the contrastive loss.
• Since we consider unsupervised adversarial attacks, a contrastive loss is employed instead of a supervised loss.
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Motivation
Characteristic of Adversarial Attacks on GCL

• If 𝐳"# − 𝐳"$%& is large, 𝜹' is effective perturbation.
• 𝐳"# − 𝐳"$%& is computed as follows:

• 𝐳"# − 𝐳"$%& becomes large when degree term ↓ and feature diff. term ↑
• The degree of 𝑣" is small (low-degree nodes)
• The features of node 𝑣& (i.e., 𝐱&) is dissimilar from the aggregation of neighborhood features in a clean graph.

Characteristic of a generated adversarial view by contrastive loss
1. Attack the nodes that have low-degree.

2. Connect the nodes with dissimilar feature

Low 
feature similarity

High 
gradient

Assumption for simplicity
• GCL model with a 1-layer GCN w/o nonlinearity.
• Perturbs only one edge 𝑣! → 𝑣".
• Attacked graph (𝐀# + 𝜹$, 𝐗𝟏)
• 𝐙&'" = 𝑓 𝐀# + 𝜹$, 𝐗𝟏

Each point: the node pair

Low 
sum of degrees
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Motivation
Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

Formulation of Adversarial Graph Contrastive Learning (AGCL)

Adversarial graph view

• Goal: robust graph representation learning based on adversarial training (AT).
• Main idea: to force the representations in the clean graph to be close to those of the attacked graphs.

• The adversarial graph contrastive learning model minimizes the training objective.

GCL term AT term

Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022

Using the attacked graph as an 
additional augmentation !
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Motivation
AT fails to preserve node similarity !

• As previously demonstrated, adversarial attacks on graphs tend to connect nodes with dissimilar features.
Ø The neighborhood feature distribution is changed by the adversarial attacks.

• And AGCL reduces the distance between the clean view and the adversarial view to achieve robustness.
Ø Neglecting the changes in the neighborhood feature distributions in the adversarial view.

We argue that existing AGCL models obtain robustness at the expense of losing the feature information.

• indicates how much the feature information the representations have

• Solid line: OL score
• Bar plot: performance improvement compared to GRACE

We observe 
• GRACE-AT have higher accuracy than GRACE

Ø They obtain robustness.
• GRACE-AT have lower OL score than GRACE

Ø They lose the feature information.
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Motivation
Node similarity preservation is crucial !

• As previously demonstrated, existing AGCL models obtain robustness at the expense of losing the feature information.

• However, the node feature information is crucial for the robustness against graph structure attacks [1, 2].

• Moreover, preserving the node feature similarity becomes especially useful for most real-world graphs.
• Graphs with noisy node labels
• Graphs with heterophilous neighbors
• Low-degree nodes

To this end, we propose a similarity-preserving adversarial graph contrastive learning (SP-AGCL) framework

We argue that the robustness of AGCL model can be further enhanced 
by fully exploiting the node feature information.

[1] Graph Structure Learning for Robust Graph Neural Networks, KDD 2020
[2] Node Similarity Preserving Graph Convolutional Networks, WSDM 2021
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Proposed Method
Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

View generation
• Step 1. Two stochastically augmented views, 𝐀!, 𝐗! and (𝐀#, 𝐗#)

• Same as the previous GCL models

• Step 2. Adversarial View
• Structural perturbations

• Adversarial feature masking

• Existing works flip the node feature
• But, it corrupts the co-occurrence/correlation statistics.
• By masking instead of flipping, we maintaining them.

• Step 3. Similarity preserving view
• Aims to preserve the node feature similarity.
• kNN graph of node features 𝐀"(( 𝐗 , 𝐗

𝜕ℒ
𝜕𝐗! +

𝜕ℒ
𝜕𝐗# = 𝐆𝐗 ∈ ℝ)×+

𝜕ℒ
𝜕𝐀! +

𝜕ℒ
𝜕𝐀# = 𝐆𝐀 ∈ ℝ)×)
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Proposed Method
Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

Cross-view Training for Robust GCL

GCL term AT term Similarity-preserving term

The representations of nodes with similar features are pulled together, 
which in turn preserves the node feature similarity.
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Experiment
Experimental settings and datasets

Baselines
• Unsupervised GRL methods

• GRACE
• GCA
• BGRL

• AGCL methods
• DGI-ADV
• ARIEL

Various scenarios
• Poisoning attack / evasive attack
• Non-targeted / Targeted attack
• random structure perturbation
• Heterophily graphs
• Noisy node labels

Various downstream tasks
• Node classification
• Link prediction
• Node clustering
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Experiment
Node classification on adversarial attack

• Metattack/nettack/random structure noise
• Poisoning attack / evasive attack

metattack

nettack

Random structure noise
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Experiment
Preserving Feature Similarity is beneficial !

• SP-AGCL preserves the node feature similarity, which results in the robust graph representation.

• SP-AGCL consistently predicts reliable links compared with other baselines across all the perturbation ratios.
• Moreover, ARIEL, the sota AGCL model, shows the worst performance 

Node feature information is beneficial to predicting reliable links 
since nodes with similar features tend to be adjacent in many real-world graphs.
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Experiment
Preserving Feature Similarity is beneficial !

• SP-AGCL outperforms baselines, especially ARIEL, on the node clustering tasks.

• The representations of ARIEL are separable but widely distributed → vague class boundaries.

• The representations of SP-AGCL are tightly grouped together → more separable class boundaries.

• Reason of the superior performance of node clustering tasks.

• Why?

• Node feature information is highly related to class information.

• The AT of ARIEL loses the node feature information, which is preserved in SP-AGCL.
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Experiment
The node feature similarity is useful for the real-world graphs

• In heterophilous networks, nodes with dissimilar properties (e.g., node features and labels) are connected.
Ø Similar to the properties of the adversarial attacks on graph structures.

• SP-AGCL outperforms the other baselines on heterophilious graphs.

• ARIEL perform worse than GRACE → AT fails to preserve the node feature similarity.

The feature similarity should be preserved 
when the given structural information is not informative
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Experiment
The node feature similarity is useful for the real-world graphs

• We compare SP-AGCL with both supervised (i.e., RGCN, ProGNN, and SimP-GCN) and AGCL methods.

• We observe that SP-AGCL outperforms both supervised and unsupervised methods.
Ø Supervised methods rely on the noisy supervision information.
Ø Better exploiting feature information results in more robust node representations.
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Conclusion

• In this paper, we discover that adversarial GCL models obtain robustness against adversarial attacks at the expense of 
not being able to preserve the node feature similarity information. 

• Based on our findings, we propose SP-AGCL that learns robust node representations that preserve the node feature 
similarity by introducing the similarity preserving view. 

• We verify the effectiveness of SP-AGCL by conducting extensive experiments on thirteen benchmark datasets with 
multiple attacking scenarios along with several real-world scenarios such as networks with noisy labels and 
heterophily.
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