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Background

Unsupervised Graph Representation Learning

* Real-world graphs are usually large-scale, and it is difficult to collect labels due to the expensive cost.

* Most recently, the graph contrastive learning (GCL) framework has taken over the mainstream of unsupervised
graph representation learning (GRL)

* Graph contrastive learning (GCL): pulling together positive samples and pushing apart negative samples.
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Background

Adversarial Attacks on Graph Structures

Attack!

GNN ﬁ GNN

e Predicted as: ‘ 9 Predicted as: ‘

* Graph Neural Networks are vulnerable to adversarial attacks on graph structures.

* Unsupervised GRL models are also vulnerable to such attacks.

» Leads to the requirements of robust graph representation learning methods

Figure: Adversarial Attacks and Defenses: Frontiers, Advances and Practice, KDD’20 tutorial



Motivation

Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

data augmentation

adversarial attack - / —
~
contrastive loss \\ /T ~ o

embedding similarity

A graph with the worst-case attack P =~ \
maximizing contrastive loss ay

P W
il e e e
\\/ \/ 7/\/
Adversarial view Gadv

Augmented view G, Augmented view G,

Formulation of the adversarial attack in GCL models

Oy =arg max E[L(f(A'+8a, X" +6x), f(A%,X?))]
5A’5X€A -

Contrastive loss

A = {(0a.5x)lIdallo < Aa.

oxllo < Ax}
Perturbation budgets
« Goal: to find the optimal edges and node feature perturbations for the A!, X! that maximally increase the contrastive loss

Since we consider unsupervised adversarial attacks, a contrastive loss is employed instead of a supervised loss.
Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022



Assumption for simplicity

. . * GCL model with a 1-layer GCN w/o nonlinearity.
MOtlvatlon * Perturbs only one edge v; — vy.

. ) « Attacked graph (Al + &4, X1
Characteristic of Adversarial Attacks on GCL graph ( aX)

o 29 = f(A' + 8,4, X1)

« Ifz? —z8* is large, 8, is effective perturbation.
« z7 —z8* is computed as follows: Each point: the node pair

z? — z?tk = (zl.2 - z}) + (z} — z?tk) ]
. g 28 ont VAW
ngh % 2.14l 1op o% gri?\“.eeshO\d\
1 aWx; Wx; gradient | %1 @@
=€ + Z — =07
i W , i J k
N+ T eNT Oty ING IV (INVE -+ 1
(4) Low = T&zofj’"v,o
Degree term Feature difference term feature similarity /253“\2 & dep
5 tie . Low
« z7 —z"" becomes large when degree term {, and feature diff. term sum of degrees
e The degree of v; is small (low-degree nodes)

The features of node vy, (i.e., X}, ) is dissimilar from the aggregation of neighborhood features in a clean graph.

Characteristic of a generated adversarial view by contrastive loss
1. Attack the nodes that have low-degree.
2. Connect the nodes with dissimilar feature



Motivation

Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

data augmentation

adversarial attack - \\ —
contrastive loss /\\ /T TS &
1 ~
----- embedding similarity 4 Original G | AR s~
| N
| ~
/ / \ 1 / k b ~
\/ \ e | oo \\\.
Using the attacked graph as an = N el /" DI e -/
. [ . \
additional augmentation ! TRET Py, P
adv Augmented view G, Augmented view G,
Formulation of Adversarial Graph Contrastive Learning (AGCL)
min L£(ZY,7%) + A, L(Z}, 72 72 = f(AL + 85, X!+ 8%)
GCL term AT term Adversarial graph view

Goal: robust graph representation learning based on adversarial training (AT).

Main idea: to force the representations in the clean graph to be close to those of the attacked graphs.
The adversarial graph contrastive learning model minimizes the training objective.
Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022



Motivation

AT fails to preserve node similarity !

—>

e As previously demonstrated, adversarial attacks on graphs tend to connect nodes with dissimilar features.
» The neighborhood feature distribution is changed by the adversarial attacks.

e And AGCL reduces the distance between the clean view and the adversarial view to achieve robustness.
> Neglecting the changes in the neighborhood feature distributions in the adversarial view.

We argue that existing AGCL models obtain robustness at the expense of losing the feature information.
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* Bar plot: performance improvement compared to GRACE

IAKNN(Z)  ARNN(X)|

|AkNN(X) |

indicates how much the feature information the representations have

We observe

* GRACE-AT have higher accuracy than GRACE
» They obtain robustness.

* GRACE-AT have lower OL score than GRACE
» They lose the feature information.




Motivation

Node similarity preservation is crucial !

* As previously demonstrated, existing AGCL models obtain robustness at the expense of losing the feature information.

* However, the node feature information is crucial for the robustness against graph structure attacks [1, 2].

We argue that the robustness of AGCL model can be further enhanced
by fully exploiting the node feature information.

* Moreover, preserving the node feature similarity becomes especially useful for most real-world graphs.
* Graphs with noisy node labels
* Graphs with heterophilous neighbors
* Low-degree nodes

# To this end, we propose a similarity-preserving adversarial graph contrastive learning (SP-AGCL) framework

[1] Graph Structure Learning for Robust Graph Neural Networks, KDD 2020
[2] Node Similarity Preserving Graph Convolutional Networks, WSDM 2021



Structural Perturbations

Proposed Method

Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

View Generation

@a,X) O

o o
mm O-
Random Edge/Feature Drop

Adversarial View ¥ ¥ Similarity-Preserving View
(Aadleadv) (Al’xl) (AZ‘Xz) (AkNN(X) X)
Sl -GN R S N R
........... > % mo - %Omo - _(5/, /Cin O- % g/p-
P e o || | &
[l |  m m “mm o ©mm
| v v ¥
\ Shared GNN Encoder (fg) /
Zadv Zl ZkNN(X)

Contrast J MJ

Cross-View Objective

vL(zt,z?)

View generation

* Step 1. Two stochastically augmented views, (A, X!) and (A?,X?)

* Same as the previous GCL models

e Step 2. Adversarial View
e Structural perturbations

0L 0L
= G, € RVXN
oAl T oAz A
* Adversarial feature masking
0L 0L
= Gx € RV*F
oxt T oxz X

* Existing works flip the node feature

e But, it corrupts the co-occurrence/correlation statistics.

* By masking instead of flipping, we maintaining them.

» Step 3. Similarity preserving view
* Aims to preserve the node feature similarity.
» kNN graph of node features (AKNN®) x)
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Structural Perturbations

Proposed Method

Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

View Generation mm -
%/Omp Construct kNN Graph
(A X) /O ol
@) O/{>
11 1] mm
Random Edge/Feature Drop
Adversarial View ¥ Similarity-Preserving View
(Audleudv) (Al'xl) (AZ‘Xz) (AkNN(X)'X)
N (N S R e
........... [a5s | o [ mm (
(b et et 907
P - )
on: o= Ol:ll o OII Cm Ol:ll é—
¥ v v ¥
\ Shared GNN Encoder (fg) /
Zadv Zl ZkNN(X)

Contrast

ZZ
-

Cross-View Objective

vL(zt,z?)

Cross-view Training for Robust GCL

min £(Z,2) + 1 L(Z,2°Y) + 2, L(Z', ")
GCL term

AT term Similarity-preserving term

The representations of nodes with similar features are pulled together,
which in turn preserves the node feature similarity.
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Experiment

Experimental settings and datasets

Baselines Various scenarios Various downstream tasks
e Unsupervised GRL methods * Poisoning attack / evasive attack ¢ Node classification
 GRACE * Non-targeted / Targeted attack e Link prediction
 GCA * random structure perturbation * Node clustering
* BGRL * Heterophily graphs
 AGCL methods * Noisy node labels
 DGI-ADV
 ARIEL
Table 7: Statistics for datasets.
Domain Dataset # Nodes # Edges # Features # Classes
Cora 2,485 5,069 1,433 7
Citation Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,338 500 3
Co-purchase Am.Photo 7,650 119,081 745 8
P Am.Comp 13,752 245,861 767 10
Co-author Co.CS 18,333 81,894 6,805 15
Co.Physics 34,493 247,962 8,415 5
Chameleon 2,277 36,101 2,325 5
Squirrel 5,201 217,073 2,089 5
Heterohpil Actor 7,600 33,544 931 5
CLeroliPLY 1 Cornell 183 295 1,703 5
Texas 183 309 1,703 5
Wisconsin 251 499 1,703 5




metattack

| Methods Poisoning (Acc.) Evasive (Acc.)
E e t Datasets | Ptb rate Clean 5% 10% 15% 20% 25% 5% 10% 15% 20% 25%
x p e r I m e n GRACE-MLP 63.2:1.7 63.2+1.7 63.2+1.7 63.2:1.7 63.2+1.7 63.2+1.7 63.2+1.7 63.2:1.7 63.2£1.7 63.2x1.7 63.2+1.7
GRACE 82.1x1.0 784%15 75.5%1.1 66.1£1.6 55.2+1.8 51.3+2.0 78.9+0.9 75.7£0.9 67.6x13 56.5+2.3 51.5+1.8
° o ° ° Cora GCA 81.520.9 79.8+0.8 75.810.6 68.4x1.6 53.4x1.7 49.5+13 79.7+1.0 76.0£1.1 68.0£1.1 54.7+1.2 49813
N Ode CIaSS|f|cat|on on adve rsa r|a| attaCk BGRL 827:1.0 | 782:21 74318  66.2:19  53.8:17  50.2:+23 | 79.2¢16  752:15  67.2:20  552%17  51.2:17
DGI-ADV 83.7:0.7 79.4+0.9 733+0.6 63.520.6 52.2+0.7 48.1+0.7 79.4+0.9 73.7:0.8 62.9:0.9 53.0£1.0 49.2+12
n e tta Ck ARIEL 80.9x0.5 79.2+0.4 77.7+0.6 69.8:0.7 57.7x0.7 52.8+1.0 79.1x03 77.820.6 70.3x0.9 58.0x1.0 53.2+1.2
SP-AGCL 83.9:0.7 82.2:0.8 79.0:0.6 73.25:0.5 66.2:2.3 65.0:1.5 82.0:0.6 78.7£1.2 73.5:2.8 61.5+5.0 57.15.5
= | Methods | Poisoning (Acc.) Evasive (Acc) GRACE-MLP | 68.0£1.2 | 680+12  680+1.2 68.0£1.2 68.0+1.2 680412 | 68.0+1.2 68012  68.0:1.2  68.0+1.2  68.0%1.2
atasets | # Ptb | Clean | 1 2 3 4 5 1 2 3 4 5
GRACE 749:0.6 | 741306  725:09  712:13  59.2:14  612¢15 | 74.0:0.7 724210  704:13  59.1:f19  623%l5
GRACE 82.242.2 76.9+1.5 70.242.4 65.9£3.0 64.6+1.5 58.9+2.1 77.7£2.7 71.1£2.5 67.1£2.5 65.142.3 60.243.3 Citeseer GCA 74.2+0.7 73.5+0.9 73.0+0.6 71.5+0.9 60.2+1.7 60.1+1.6 73.8+0.7 73.4+0.5 72.0:0.9 59.5+1.8 61.5+1.7
GCA 81.3+17 | 77.74#21 71622  67.2+23  63.9+22  59.2¢2.0 | 79.2412  73.0+0.8  69.2¢12  67.1+15  62.3+3.0
Cora BGRL 83.0£2.3 | 78619  73.0+3.9  69.3+29  63.7+50  60.5¢3.1 | 79.2¢2.8  745+21 70732  66.94+2.8  64.13.0 BGRL v 734110 721111 69.1:1.0 61.5¢14 57.7£1.3 58.212.8 72.5£1.2 69.7413 68.111.6 58511.6 60312.0
DOLADY | 817507 | 780523  Tiiie1  c0oeid 5718 60oeto | 7siiie 730821 T06i1s  c6sels  63dirs DGI-AD 766:03 | 748:03 710805  70.1:03  57.9:0.8  60.6:12 | 74803 713205  69.7:05  56.1:0.6  57.4:15
ARIEL 76.0+1.7 | 71922 649413  635:1.6  63.0+1.6  53.7+17 | 71.7+20  654%1.2 63515  64.1+13  54.61.6 ARIEL 76.7+0.5 752304 72.8+0.5 70.2£0.5 60.1+1.1 62.710.5 75.3:0.4 73.320.5 70.820.4 59.810.8 63.6x1.0
SP-AGCL | 82520 | 79.5:1.8  75.3+2.5 73417 67.4+2.3  63.6t2.4 | 80.2:+24  78.7+3.1 77.1¥3.2  73.5£34  72.8%3.7 SP-AGCL 75.9:0.4 75.3x0.5  73.5:0.6 72.1:1.1 66.0+1.5  69.6:0.9 75.0£1.1 73.5x1.0 72411 60.6+1.1 65.6x0.9
GRACE 82.4+0.5 | 81.8+1.1  77.6+42  68.3+44 64330  59.1+2.7 | 822+0.6  81.1+1.3  78.1%32  72.4+48 664439 GRACE-MLP | 82.4:02 82.40.2 82.440.2 82.420.2 82.4:0.2 82.4+0.2 82.4+0.2 82.420.2 82.40.2 82.4:0.2 82.40.2
GCA 82.5£0.0 | 82.4%05 78329  69.4%59  65.9+20  583+4.0 | 82.50.0  8LI*15  79.2¢25  77.0+2.6  71.3%d4

Citeseer | BGRL 82.5+0.7 | 814%12  79.7+4.6  75.1%7.3  727+7.6  67.3+85 | 81.6+1.1  80.0+3.3  78.9+40 767456  73.3%6.5 GRACE 85.920.1 81.310.2 78.210.4 76.1£1.3 73.9£1.7 71.312.6 80.710.1 76.820.2 73.5:0.1 71.420.2 69.0:0.3
DGIADV | 82.5:0.0 | 814207  80.2#15  743%37  68.6:1.2 65612 | 824205 81310  797:0.6 78713  765:16 Pubmed GCA 86.5:0.2 | 812:05  781:05 75.9£1.2 742:04 72018 | 80.7:02  76.7:03  73.2:03 709102  68.6:03
ARIEL 82.5+0.0 | 81.1+0.9  80.6+0.6  74.3+39  662+1.6  63.2+1.0 | 81.9+0.8  813+0.6  81.0£0.0  80.2+0.8  78.6+1.5 BGRL 85.1£0.2 813103 79.0+0.4 76.6:0.9 74.8:0.9 73.0+0.5 80.610.4 77.5204 74.520.6 72,4107 70.3:0.6
SP-AGCL | 82.50.0 | 82.5:t0.0 81.6x1.1 80.0+3.0 75.4%6.1 72.7#53 | 82.4+05 82.1x1.0 81.6x16 80.2+4.2  78.1x4.9 DGI-ADV OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
GRACE 87.9+0.6 | 86.6+0.5  843+0.8  81.7+0.0  77.9+15  73.0+1.3 | 863%04  84.4+0.7  81.8+1.0  783+1.2  74.5+13 ARIEL 81.2:0.4 77.820.3 75.810.4 74.0:0.5 72.320.5 70.7+0.3 77.8£0.5 75.920.5 74.1:0.6 72.320.6 70.820.5
GCA 88.0+0.5 | 87.1+0.6 84.7+0.7  82.2+15 77.7+1.2 73.6+1.7 | 87,005 85.2+0.7  82.7+1.1 79.2+0.7 75.5+1.2 SP-AGCL 85.520.3 81.9:0.2 79.7+0.3 77.4:0.3 75.6:0.3 73.3:0.3 81.9:0.2 79.6:0.3 77.1x04 75.1:0.5 72.8:0.5

Pubmed | BGRL 87.4+0.8 | 85.8+0.8  83.2+1.0  79.3+1.0  754%1.2  70.2¢+1.2 | 85.8+1.1  83.7+1.0  803%12  76.1+1.0  723+1.1
DGI-ADV OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM GRACE-MLP 87.2:0.8 87.2:0.8 87.210.8 87.2:0.8 87.210.8 87.2+0.8 87.2+0.8 87.2:0.8 87.2:0.8 87.2:0.8 87.2:0.8
ARIEL 83.9+0.8 82.0£1.0 79.4+1.5 75214 72,0413 67.5+2.6 81.9+0.7 78.8+1.6 76.1£1.2 72.0+1.2 68.2+1.6 GRACE 92.0:0.4 89.520.5 88.3+1.1 87.6x0.9 87.5%1.2 87.1+1.2 88.6+0.4 87.5:0.8 87.3x0.8 86.6x1.0 85.6x1.1
SP-AGCL | 87.4+0.8 | 85.9+0.7 843410  82.7+1.1 80.1¥1.6  77.7+2.2 | 86.2+0.5  845%0.7  82.9+0.6 81.0+1.1 78.1:16 Am.Photo GCA 92.2:0.4 89.420.6 88.310.8 87.820.7 87.611.0 87.5£0.7 88.7£0.6 88.0£0.7 87.8£1.4 87.310.9 86.411.2

BGRL 92.1:0.4 89.2+0.6 88.70.5 88.820.5 89.0:0.7 89.2+0.4 89.4+0.5 88.320.6 88.220.6 87.6x0.5 873206
. DGI-ADV 91.6x0.5 83.5+0.5 80.7+0.6 79.320.6 78.1:0.6 77.3+0.6 83.6+0.5 80.8x0.5 79.520.5 78.0x0.6 77404
R an d om structure noise ARIEL 92.5:0.2 | 90.1x04  89.9+0.5 89.920.5 89.9:0.5  89.8:0.6 | 89.7t+04  89.1203  886:02 88.6:0.4 88.4:0.3
SP-AGCL 93.3:0.3 91.4:0.5 90.6:0.6 90.5:0.8 90.2:0.9 89.8+1.0 90.3:0.4 89.3:0.3 88.7:0.5 88.210.7 87.6x0.5
| Methods | Poisoning (Acc.) Evasive (Acc.)
Datasets | Ptb rate | Clean | 20% 0% 60% 80% 100% 20% 0% 60% 80% 100% GRACE-MLP 82.7:0.4 827104 82.7+04 82.7£0.4 82.7:0.4 827404 82.71+04 82.7£0.4 82.7:0.4 82.710.4 827104
GRACE 521510 775512 74220 703212 669411 65.120.9 784219 748516 115519 65,6229 oi1:24 GRACE 86.420.5 83.7+0.3 82.5+0.6 81.320.5 80.3:0.7 78.8+1.0 84.0+03 83.6:0.4 82.8:0.3 82.0x0.9 81.7:0.6
puvive 015109 | remito  vriets  erseia  erosis  sanens | smesis  r50eia  voaeia  rocsie  eriiss AmComp | GCA 86604 | 84604  83.4:03  823:04  814:04  80.1:0.5 | 545:03 838204  82.8:02 82308  82.0:04
Cora | BGRL 82710 | 77.8£12  748+14 72614  69.6£0.8  68.0:12 | 79.0:09  765t13  74.2+12  73.0:07  70.70.8 BGRL 88.0:04 | 852:0.6 842106  83.7:0.6 833207 834106 | 85707 85006  84.1:06  83.820.7 834205
DGI-ADV | 83.7+0.7 | 788+1.0  76.7+0.7  73.8+0.6  69.9+1.1  68.0+1.4 | 80.6+1.0  782+1.1  753%18  73.2¢1.8  70.7+2.4 DGI-ADV OOM ooM OOM OOM ooM OOM OOM OOM OOM ooM OOM
ARIEL 80.9+0.5 | 758408  69.8+0.9  64.8+1.3 60715  57.6+1.1 | 761+1.0  70.6+1.1  654+15  60.2+15  53.6:1.7 ARIEL 874204 85.40.5 84.5+0.4 83.8£0.4 83.70.5 83.640.5 85.740.3 84.6£0.4 83.9:0.5 83.8:0.4 83.630.5
SP-AGCL | 83.9+0.7 | 813+13 802206 786404 76.2¢1.3 76.8+0.9 | 818+13 80.1#1.1 787+11 77.5¢15 76.1x13 SP-AGCL 89.1:0.4 | 86.9:0.3 85.6:0.5  85.1:0.4  85.0:0.5 84.8:0.7 | 87.2:0.3 85.9:0.4 851:0.5 84.4:04 84.1:0.6
GRACE 74.9+0.6 | 72.0£0.7  68.8:0.9  66.0:0.6  63.60.8 61307 | 728+0.9  714%0.7  70.1x0.7  68.7+0.8  67.7+1.1
GCA 742407 | 708+0.9  67.0+1.6  63.6+1.5  61.1+1.2  57.5+22 | 72305  70.9+0.9  69.6+1.1  68.5:t0.8  67.6+0.9 GRACE-MLP | 921202 92.120.2 92.110.2 92.1:0.2 92.120.2 92.1:0.2 92.1£0.2 92.1:0.2 92.1:0.2 92.120.2 92.120.2
Citeseer | BGRL 73.4%£1.0 | 704%12  67.7+1.0  65.042.2  63.7+1.4  614+17 | 715+0.9  69.4+0.9  68.1+0.7  66.6+1.2  65.8+1.0 GRACE 923102 91.2:0.1 90.610.2 90.0£0.2 89.410.1 88.910.2 91.2+03 90.4:03 89.7:04 89304 88.7:04
DGI-ADV | 76.6+0.3 73.1+0.4 70.10.9 67.4+1.0 66.0+0.6 64.0+0.5 74.7+0.5 72.8+0.6 71.3+0.8 69.6+0.4 68.2+1.3 Co.CS GCA 92.520.1 91.420.2 90.7+0.2 90.2:0.2 89.7+0.2 89.3+0.1 91.4+0.2 90.8:0.3 90.0£0.3 89.6x0.3 89.0+0.3
ARIEL 76.7+0.5 | 74.2¢0.6  728+08 702:04  69.1¥04  67.6£07 | 75.0%0.7 737+0.6 724%08 71108  70.7209 BGRL 92.4:02 | 913:0.1  90.5:0.2  89.9:02  89.3:02  887:02 | 913:02  905:02  89.8:03  89.4:03  88.8:02
SP-AGCL 75.9+0.4 74.1£0.7 72.7+0.6 70.8+0.8 69.5+0.4 68.3+0.6 74.8+0.4 73.5+0.6 72.7+0.7 71.7+0.4 70.6+0.8 DGI-ADV OOM OOM OOM OOM OOM OOM OOM OOM OOM OoOM OOM
GRACE 85.9+0.1 | 82.1%02  80.1%0.3 78307  767+03  757:02 | 81.2:02  789+0.1  77.3x0.3  76.2£0.3  755%0.2 ARIEL 923202 | 91.0:0.1  90.210.2 89.620.3 88.8:0.2  88.140.2 | 90.8+0.1  90.1203  89.2:02  88.7:0.2  87.9:0.1
GCA 86.50.2 | 82.6+0.1  80.4+0.6  78.6%0.7  77.1#06  76.0+0.3 | 812402  78.6+0.2  76.8+0.2 75603  74.8+0.2 SP-AGCL 93.7:0.2 | 92.9:0.2 92.8:0.2 92.5:0.2 92.4:0.1 92.3x0.2 | 92.7:0.1 91.9:0.2 91.2:0.2 90.6:0.2 89.9:0.2
Pubmed | BGRL 85.1+0.2 | 81.3+0.6  79.5+0.8  78.3+1.0  77.2+12  76.8+0.7 | 80.6+0.8  78.7+0.9  77.3+1.0  763+12  75.6+1.0
DGI-ADV OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM GRACE-MLP OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
ARIEL 83.4+0.1 | 79.0+04  77.2403  76.4+0.3  755+02  74.8+0.3 | 78405  76.8+03  757+0.4 747402  74.0%05 GRACE 0OM 0OOM 00OM 0OM 0OOM OOM 00M 0OM 0OOM 0OOM 00M
SP-AGCL 85.5+0.3 82.3+0.2 80.7+0.2 79.9+0.1 78.6+0.2 78.0+0.2 82.1+0.2 80.1+0.2 78.7+0.5 77.9+0.4 77.2+0.5 CO.PhySiCS GCA OOM OOM OOM OOM OOM OOM OOM OOM 0OOM OOM OOM
BGRL 95.2:0.1 94.110.2 93.2+0.2 92.520.1 91.620.2 91.01£0.1 94.21+0.1 93.2:0.2 92.520.1 91.620.1 91.0£0.2

M k k . DGI-ADV OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
° etattac / nettac / ran d om structure noise ARIEL 95.1:0.1 | 93.2:02  924#02  916:0.2  90.7:0.3 902402 | 93.9:0.1 933201  926:02  91.8:0.2 914202
SP-AGCL 95.8+0.1 94.9:0.2 94.4:0.1 93.6:0.1 93.0:0.1 92.5:0.1 95.0:0.1 94.2:0.1 93.3:0.2 92.4:0.1 91.7:0.1

* Poisoning attack / evasive attack
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Experiment

Preserving Feature Similarity is beneficial !
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e SP-AGCL preserves the node feature similarity, which results in the robust graph representation.
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* SP-AGCL consistently predicts reliable links compared with other baselines across all the perturbation ratios.
Moreover, ARIEL, the sota AGCL model, shows the worst performance

Node feature information is beneficial to predicting reliable links
since nodes with similar features tend to be adjacent in many real-world graphs.
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Preserving Feature Similarity is beneficial !
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SP-AGCL outperforms baselines, especially ARIEL, on the node clustering tasks.

The representations of ARIEL are separable but widely distributed - vague class boundaries.

The representations of SP-AGCL are tightly grouped together - more separable class boundaries.
* Reason of the superior performance of node clustering tasks.

Why?
* Node feature information is highly related to class information.

* The AT of ARIEL loses the node feature information, which is preserved in SP-AGCL. 15



Experiment

The node feature similarity is useful for the real-world graphs

* In heterophilous networks, nodes with dissimilar properties (e.g., node features and labels) are connected.

Table 2: Node classification on heterophilous graphs.

Chameleon  Squirrel Actor Texas  Wisconsin  Cornell
GRACE 46.6+2.8 35.2¢1.0  29.5%x0.5 61.16.5  55.3%5.5  61.1%5.0
GCA 50.0£3.0 37.1£1.8 29.3+0.8 60.0+6.3 55.7£8.0 59.5+3.8
BGRL 57.1£3.6 40.6£1.6 31.0+x1.2 61.6%6.0 57.7£5.2 57.8%£4.7
DGI-ADV 53.4+2.2 40.1£1.6  26.5%0.9 58.4%6.1 57.3+4.9 60.5+5.8
ARIEL 44.3+£2.4 36.8+1.2 29.6+0.3 58.4+4.7 53.3£7.2 57.8t4.4
SP-AGCL 57.5%£2.5 41.1+1.9 32.3+1.3 64.9+6.8 58.4+5.5 64.3+3.6

» Similar to the properties of the adversarial attacks on graph structures.

e SP-AGCL outperforms the other baselines on heterophilious graphs.

* ARIEL perform worse than GRACE — AT fails to preserve the node feature similarity.

when the given structural information is not informative

The feature similarity should be preserved

16



Experiment

The node feature similarity is useful for the real-world graphs
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Figure 4: Node classification with noisy label.

*  We compare SP-AGCL with both supervised (i.e., RGCN, ProGNN, and SimP-GCN) and AGCL methods.

* We observe that SP-AGCL outperforms both supervised and unsupervised methods.
» Supervised methods rely on the noisy supervision information.
» Better exploiting feature information results in more robust node representations.



Conclusion

* In this paper, we discover that adversarial GCL models obtain robustness against adversarial attacks at the expense of
not being able to preserve the node feature similarity information.

* Based on our findings, we propose SP-AGCL that learns robust node representations that preserve the node feature
similarity by introducing the similarity preserving view.

* We verify the effectiveness of SP-AGCL by conducting extensive experiments on thirteen benchmark datasets with
multiple attacking scenarios along with several real-world scenarios such as networks with noisy labels and

heterophily.
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Thank you for listening
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