

Similarity Preserving Adversarial Graph Contrastive Learning

Yeonjun In*, Kanghoon Yoon*, Chanyoung Park

Department of Industrial & Systems Engineering KAIST {yeonjun.in, ykhoon08, cy.park}@kaist.ac.kr

Contents

Background

Motivation

Proposed method: SP-AGCL

Experiments

Conclusion

Background

Unsupervised Graph Representation Learning

- Real-world graphs are usually large-scale, and it is difficult to collect labels due to the expensive cost.
- Most recently, the graph contrastive learning (GCL) framework has taken over the mainstream of unsupervised graph representation learning (GRL)
- Graph contrastive learning (GCL): pulling together positive samples and pushing apart negative samples.

GRACE, ICML'20

GCA, WWW'21

Figure: Deep Graph Contrastive Representation Learning, ICML'20 Figure: Graph Contrastive Learning with Adaptive Augmentation, WWW'21

Background

Adversarial Attacks on Graph Structures

- Graph Neural Networks are vulnerable to adversarial attacks on graph structures.
- Unsupervised GRL models are also vulnerable to such attacks.

Leads to the requirements of robust graph representation learning methods

Figure: Adversarial Attacks and Defenses: Frontiers, Advances and Practice, KDD'20 tutorial

Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

Formulation of the adversarial attack in GCL models

$$\delta_{\mathbf{A}}^{*}, \delta_{\mathbf{X}}^{*} = \arg \max_{\substack{\delta_{\mathbf{A}}, \delta_{\mathbf{X}} \in \Delta \\ \mathsf{Contrastive loss}}} \mathbb{E}\left[\underbrace{\mathcal{L}}(f(\mathbf{A}^{1} + \delta_{\mathbf{A}}, \mathbf{X}^{1} + \delta_{\mathbf{X}}), f(\mathbf{A}^{2}, \mathbf{X}^{2}))\right] \qquad \Delta = \{(\delta_{\mathbf{A}}, \delta_{\mathbf{X}}) | \|\delta_{\mathbf{A}}\|_{0} \leq \underline{\Delta_{\mathbf{A}}}, \|\delta_{\mathbf{X}}\|_{0} \leq \underline{\Delta_{\mathbf{X}}}\}$$
Perturbation budgets

- Goal: to find the optimal edges and node feature perturbations for the A^1 , X^1 that maximally increase the contrastive loss.
- Since we consider unsupervised adversarial attacks, a contrastive loss is employed instead of a supervised loss.

Characteristic of Adversarial Attacks on GCL

- If $\mathbf{z}_i^2 \mathbf{z}_i^{atk}$ is large, $\boldsymbol{\delta}_A$ is effective perturbation.
- $\mathbf{z}_i^2 \mathbf{z}_i^{atk}$ is computed as follows:

Assumption for simplicity

- GCL model with a 1-layer GCN w/o nonlinearity.
- Perturbs only one edge $v_i \rightarrow v_k$.

• Attacked graph
$$(\mathbf{A}^1 + \boldsymbol{\delta}_A, \mathbf{X}^1)$$

•
$$\mathbf{Z}^{atk} = f(\mathbf{A}^1 + \boldsymbol{\delta}_A, \mathbf{X}^1)$$

- $\mathbf{z}_i^2 \mathbf{z}_i^{atk}$ becomes large when degree term \downarrow and feature diff. term \uparrow
 - The degree of v_i is small (*low-degree nodes*)
 - The *features of node* v_k (*i.e.*, \mathbf{x}_k) *is dissimilar* from the aggregation of neighborhood features in a clean graph.

Characteristic of a generated adversarial view by contrastive loss

- 1. Attack the nodes that have low-degree.
- 2. Connect the nodes with dissimilar feature

Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

Formulation of Adversarial Graph Contrastive Learning (AGCL)

$$\min_{\Theta} \underbrace{\mathcal{L}(\mathbf{Z}^{1}, \mathbf{Z}^{2})}_{\text{GCL term}} + \lambda_{1} \underbrace{\mathcal{L}(\mathbf{Z}^{1}, \mathbf{Z}^{\text{adv}})}_{\text{AT term}} \qquad \qquad \mathbf{Z}^{\text{adv}} = f(\mathbf{A}^{1} + \delta_{\mathbf{A}}^{*}, \mathbf{X}^{1} + \delta_{\mathbf{X}}^{*})$$

- Goal: robust graph representation learning based on adversarial training (AT).
- Main idea: to force the representations in the clean graph to be close to those of the attacked graphs.
 - The adversarial graph contrastive learning model minimizes the training objective.

Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022

AT fails to preserve node similarity !

- As previously demonstrated, adversarial attacks on graphs tend to connect nodes with dissimilar features.
 - > The neighborhood feature distribution is changed by the adversarial attacks.
- And AGCL reduces the distance between the clean view and the adversarial view to achieve robustness.
 - > Neglecting the changes in the neighborhood feature distributions in the adversarial view.

We argue that existing AGCL models obtain robustness at the expense of losing the feature information.

- indicates how much the feature information the representations have
 - We observe
 - GRACE-AT have higher accuracy than GRACE
 - They obtain robustness.

 $OL(\mathbf{A}^{k\mathrm{NN}(\mathbf{Z})}, \mathbf{A}^{k\mathrm{NN}(\mathbf{X})}) = \frac{|\mathbf{A}^{k\mathrm{NN}(\mathbf{Z})} \cap \mathbf{A}^{k\mathrm{NN}(\mathbf{X})}|}{|\mathbf{A}^{k\mathrm{NN}(\mathbf{X})}|}$

- GRACE-AT have lower OL score than GRACE
 - They lose the feature information.

- Solid line: OL score
- Bar plot: performance improvement compared to GRACE

Node similarity preservation is crucial !

- As previously demonstrated, existing AGCL models obtain robustness at the expense of losing the feature information.
- However, the node feature information is crucial for the robustness against graph structure attacks [1, 2].

We argue that the robustness of AGCL model can be further enhanced by fully exploiting the node feature information.

- Moreover, preserving the node feature similarity becomes especially useful for most real-world graphs.
 - Graphs with noisy node labels
 - Graphs with heterophilous neighbors
 - Low-degree nodes

To this end, we propose a *similarity-preserving adversarial graph contrastive learning* (SP-AGCL) framework

^[1] Graph Structure Learning for Robust Graph Neural Networks, KDD 2020

^[2] Node Similarity Preserving Graph Convolutional Networks, WSDM 2021

Proposed Method

Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

View generation

- Step 1. Two stochastically augmented views, (A^1, X^1) and (A^2, X^2)
 - Same as the previous GCL models
- Step 2. Adversarial View
 - Structural perturbations

$$\frac{\partial \mathcal{L}}{\partial \mathbf{A}^1} + \frac{\partial \mathcal{L}}{\partial \mathbf{A}^2} = \mathbf{G}_{\mathbf{A}} \in \mathbb{R}^{N \times N}$$

Adversarial feature masking

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}^1} + \frac{\partial \mathcal{L}}{\partial \mathbf{X}^2} = \mathbf{G}_{\mathbf{X}} \in \mathbb{R}^{N \times F}$$

- Existing works flip the node feature
- But, it corrupts the co-occurrence/correlation statistics.
- By masking instead of flipping, we maintaining them.

• Step 3. Similarity preserving view

- Aims to preserve the node feature similarity.
- $kNN graph of node features (A^{kNN(X)}, X)$

Proposed Method

Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

Cross-view Training for Robust GCL

 $\min_{\Theta} \underbrace{\mathcal{L}(\mathbf{Z}^{1}, \mathbf{Z}^{2})}_{\mathbf{Q}(\mathbf{Z}^{1}, \mathbf{Z}^{2})} + \lambda_{1} \underbrace{\mathcal{L}(\mathbf{Z}^{1}, \mathbf{Z}^{adv})}_{\mathbf{Q}(\mathbf{Z}^{1}, \mathbf{Z}^{c})} + \lambda_{2} \underbrace{\mathcal{L}(\mathbf{Z}^{1}, \mathbf{Z}^{c})}_{\mathbf{Q}(\mathbf{Z}^{1}, \mathbf{Z}^{c})}$

GCL term AT term Similarity-preserving term

The representations of nodes with similar features are pulled together, which in turn preserves the node feature similarity.

Experimental settings and datasets

Baselines

- Unsupervised GRL methods
 - GRACE
 - GCA
 - BGRL

• AGCL methods

- DGI-ADV
- ARIEL

Various scenarios

- Poisoning attack / evasive attack
- Non-targeted / Targeted attack
- random structure perturbation
- Heterophily graphs
- Noisy node labels

Various downstream tasks

- Node classification
- Link prediction
- Node clustering

Table 7: Statistics for datasets.

Domain	Dataset	# Nodes	# Edges	# Features	# Classes
	Cora	2,485	5,069	1,433	7
Citation	Citeseer	2,110	3,668	3,703	6
	Pubmed	19,717	44,338	500	3
Co-purchase	Am.Photo	7,650	119,081	745	8
Co-purchase	Am.Comp	13,752	245,861	767	10
Coouthor	Co.CS	18,333	81,894	6,805	15
Co-author	Co.Physics	34,493	247,962	8,415	5
Heterohpily	Chameleon	2,277	36,101	2,325	5
	Squirrel	5,201	217,073	2,089	5
	Actor	7,600	33,544	931	5
	Cornell	183	295	1,703	5
	Texas	183	309	1,703	5
	Wisconsin	251	499	1,703	5

metattack

Experiment

Node classification on adversarial attack

nettack

	Methods			P	oisoning (Aco	c.)		Evasive (Acc.)					
Datasets	# Ptb	Clean	1	2	3	4	5	1	2	3	4	5	
	GRACE	82.2±2.2	76.9±1.5	70.2±2.4	65.9±3.0	64.6±1.5	58.9±2.1	77.7±2.7	71.1±2.5	67.1±2.5	65.1±2.3	60.2±3.3	
	GCA	81.3±1.7	77.7±2.1	71.6±2.2	67.2±2.3	63.9±2.2	59.2±2.0	79.2±1.2	73.0±0.8	69.2±1.2	67.1±1.5	62.3±3.0	
Cora	BGRL	83.0±2.3	78.6±1.9	73.0±3.9	69.3±2.9	63.7±5.0	60.5±3.1	79.2±2.8	74.5±2.1	70.7±3.2	66.9±2.8	64.1±3.0	
	DGI-ADV	81.7±0.7	78.0±2.3	71.1±2.1	69.9±1.1	65.7±1.8	60.7±1.9	78.1±1.6	73.0±2.1	70.6±1.3	66.5±1.2	63.4±1.5	
	ARIEL	76.0±1.7	71.9±2.2	64.9±1.3	63.5±1.6	63.0±1.6	53.7±1.7	71.7±2.0	65.4±1.2	63.5±1.5	64.1±1.3	54.6±1.6	
	SP-AGCL	82.5±2.0	79.5±1.8	75.3±2.5	73.4±1.7	67.4±2.3	63.6±2.4	80.2±2.4	78.7±3.1	77.1±3.2	73.5±3.4	72.8±3.7	
	GRACE	82.4±0.5	81.8±1.1	77.6±4.2	68.3±4.4	64.3±3.0	59.1±2.7	82.2±0.6	81.1±1.3	78.1±3.2	72.4±4.8	66.4±3.9	
	GCA	82.5±0.0	82.4±0.5	78.3±2.9	69.4±5.9	65.9±2.0	58.3±4.0	82.5±0.0	81.1±1.5	79.2±2.5	77.0±2.6	71.3±4.4	
Citeseer	BGRL	82.5±0.7	81.4±1.2	79.7±4.6	75.1±7.3	72.7±7.6	67.3±8.5	81.6±1.1	80.0±3.3	78.9±4.0	76.7±5.6	73.3±6.5	
	DGI-ADV	82.5±0.0	81.4±0.7	80.2±1.5	74.3±3.7	68.6±1.2	65.6±1.2	82.4±0.5	81.3±1.0	79.7±0.6	78.7±1.3	76.5±1.6	
	ARIEL	82.5±0.0	81.1±0.9	80.6±0.6	74.3±3.9	66.2±1.6	63.2±1.0	81.9±0.8	81.3±0.6	$81.0 {\pm} 0.0$	80.2±0.8	78.6±1.5	
	SP-AGCL	82.5±0.0	82.5±0.0	81.6 ± 1.1	80.0±3.0	75.4±6.1	72.7±5.3	82.4±0.5	82.1±1.0	81.6±1.6	80.2±4.2	78.1±4.9	
	GRACE	87.9±0.6	86.6±0.5	84.3±0.8	81.7±0.9	77.9±1.5	73.0±1.3	86.3±0.4	84.4±0.7	81.8±1.0	78.3±1.2	74.5±1.3	
	GCA	88.0±0.5	87.1±0.6	84.7±0.7	82.2±1.5	77.7±1.2	73.6±1.7	87,0±0.5	85.2±0.7	82.7±1.1	79.2±0.7	75.5±1.2	
Pubmed	BGRL	87.4±0.8	85.8±0.8	83.2±1.0	79.3±1.0	75.4±1.2	70.2±1.2	85.8±1.1	83.7±1.0	80.3±1.2	76.1±1.0	72.3±1.1	
	DGI-ADV	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	
	ARIEL	83.9±0.8	82.0±1.0	79.4±1.5	75.2±1.4	72.0±1.3	67.5±2.6	81.9±0.7	78.8±1.6	76.1±1.2	72.0±1.2	68.2±1.6	
	SP-AGCL	87.4±0.8	85.9±0.7	84.3±1.0	82.7±1.1	80.1±1.6	77.7±2.2	86.2±0.5	84.5±0.7	82.9±0.6	81.0 ± 1.1	78.1±1.6	

Random structure noise

	Methods			Р	oisoning (Aco	e.)		Evasive (Acc.)					
Datasets	Ptb rate	Clean	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%	
	GRACE	82.1±1.0	77.5±1.2	74.2±0.9	70.3±1.2	66.9±1.1	65.1±0.9	78.4±1.9	74.8±1.6	71.5±1.9	68.6±2.9	64.1±2.4	
	GCA	81.5±0.9	76.8±1.0	72.0±1.2	67.2±1.4	61.9±1.8	53.4±3.2	77.9±1.1	75.0±1.3	72.7±1.3	70.6±1.5	67.8±2.3	
Cora	BGRL	82.7±1.0	77.8±1.2	74.8 ± 1.4	72.6±1.4	69.6±0.8	68.0±1.2	79.0±0.9	76.5±1.3	74.2±1.2	73.0±0.7	70.7±0.8	
	DGI-ADV	83.7±0.7	78.8±1.0	76.7±0.7	73.8±0.6	69.9±1.1	68.0 ± 1.4	80.6±1.0	78.2±1.1	75.3±1.8	73.2±1.8	70.7±2.4	
	ARIEL	80.9±0.5	75.8±0.8	69.8±0.9	64.8±1.3	60.7±1.5	57.6±1.1	76.1±1.0	70.6±1.1	65.4±1.5	60.2±1.5	53.6±1.7	
-	SP-AGCL	83.9±0.7	81.3±1.3	80.2±0.6	78.6±0.4	76.2±1.3	76.8±0.9	81.8±1.3	80.1±1.1	78.7±1.1	77.5±1.5	76.1±1.3	
	GRACE	74.9±0.6	72.0±0.7	68.8±0.9	66.0±0.6	63.6±0.8	61.3±0.7	72.8±0.9	71.4±0.7	70.1±0.7	68.7±0.8	67.7±1.1	
	GCA	74.2±0.7	70.8±0.9	67.0±1.6	63.6±1.5	61.1±1.2	57.5±2.2	72.3±0.5	70.9±0.9	69.6±1.1	68.5±0.8	67.6±0.9	
Citeseer	BGRL	73.4±1.0	70.4±1.2	67.7±1.0	65.0±2.2	63.7±1.4	61.4±1.7	71.5±0.9	69.4±0.9	68.1±0.7	66.6±1.2	65.8±1.0	
	DGI-ADV	76.6±0.3	73.1±0.4	70.1±0.9	67.4±1.0	66.0±0.6	64.0±0.5	74.7±0.5	72.8±0.6	71.3±0.8	69.6±0.4	68.2±1.3	
	ARIEL	76.7±0.5	74.2±0.6	72.8±0.8	70.2±0.4	69.1±0.4	67.6±0.7	75.0±0.7	73.7±0.6	72.4±0.8	71.1±0.8	70.7±0.9	
	SP-AGCL	75.9±0.4	74.1±0.7	72.7±0.6	70.8±0.8	69.5±0.4	68.3±0.6	74.8±0.4	73.5±0.6	72.7±0.7	71.7 ± 0.4	70.6±0.8	
	GRACE	85.9±0.1	82.1±0.2	80.1±0.3	78.3±0.7	76.7±0.3	75.7±0.2	81.2±0.2	78.9±0.1	77.3±0.3	76.2±0.3	75.5±0.2	
	GCA	86.5±0.2	82.6±0.1	80.4±0.6	78.6±0.7	77.1±0.6	76.0±0.3	81.2±0.2	78.6±0.2	76.8±0.2	75.6±0.3	74.8±0.2	
Pubmed	BGRL	85.1±0.2	81.3±0.6	79.5±0.8	78.3±1.0	77.2±1.2	76.8±0.7	80.6±0.8	78.7±0.9	77.3±1.0	76.3±1.2	75.6±1.0	
	DGI-ADV	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	
	ARIEL	83.4±0.1	79.0±0.4	77.2±0.3	76.4±0.3	75.5±0.2	74.8±0.3	78.4±0.5	76.8±0.3	75.7±0.4	74.7±0.2	74.0±0.5	
	SP-AGCL	85.5±0.3	82.3±0.2	80.7±0.2	79.9±0.1	78.6±0.2	78.0±0.2	82.1±0.2	80.1±0.2	78.7±0.5	77.9±0.4	77.2±0.5	

- Metattack/nettack/random structure noise
- Poisoning attack / evasive attack

	Methods		Poisoning (Acc.)					Evasive (Acc.)				
Datasets	Ptb rate	Clean	5%	10%	15%	20%	25%	5%	10%	15%	20%	25%
	GRACE-MLP	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7	63.2±1.7
	GRACE	82.1±1.0	78.4±1.5	75.5±1.1	66.1±1.6	55.2±1.8	51.3±2.0	78.9±0.9	75.7±0.9	67.6±1.3	56.5±2.3	51.5±1.8
Cora	GCA	81.5±0.9	79.8±0.8	75.8±0.6	68.4±1.6	53.4±1.7	49.5±1.3	79.7±1.0	76.0±1.1	68.0±1.1	54.7±1.2	49.8±1.3
	BGRL	82.7±1.0	78.2±2.1	74.3±1.8	66.2±1.9	53.8±1.7	50.2±2.3	79.2±1.6	75.2±1.5	67.2±2.0	55.2±1.7	51.2±1.7
	DGI-ADV	83.7±0.7	79.4±0.9	73.3±0.6	63.5±0.6	52.2±0.7	48.1±0.7	79.4±0.9	73.7±0.8	62.9±0.9	53.0±1.0	49.2±1.2
	ARIEL	80.9±0.5	79.2±0.4	77.7±0.6	69.8±0.7	57.7±0.7	52.8±1.0	79.1±0.3	77.8±0.6	70.3±0.9	58.0±1.0	53.2±1.2
	SP-AGCL	83.9±0.7	82.2±0.8	79.0±0.6	73.25±0.5	66.2±2.3	65.0±1.5	82.0±0.6	78.7±1.2	73.5±2.8	61.5±5.0	57.1±5.5
	GRACE-MLP	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2	68.0±1.2
	GRACE	74.9±0.6	74.1±0.6	72.5±0.9	71.2±1.3	59.2±1.4	61.2±1.5	74.0±0.7	72.4±1.0	70.4±1.3	59.1±1.9	62.3±1.5
Citeseer	GCA	74.2±0.7	73.5±0.9	73.0±0.6	71.5±0.9	60.2±1.7	60.1±1.6	73.8±0.7	73.4±0.5	72.0±0.9	59.5±1.8	61.5±1.7
	BGRL	73.4±1.0	72.1±1.1	69.1±1.0	67.5±1.4	57.7±1.3	58.2±2.8	72.5±1.2	69.7±1.3	68.1±1.6	58.5±1.6	60.3±2.0
	DGI-ADV	76.6±0.3	74.8±0.3	71.0±0.5	70.1±0.3	57.9±0.8	60.6±1.2	74.8±0.3	71.3±0.5	69.7±0.5	56.1±0.6	57.4±1.5
	ARIEL	76.7±0.5	75.2±0.4	72.8±0.5	70.2±0.5	60.1±1.1	62.7±0.5	75.3±0.4	73.3±0.5	70.8±0.4	59.8±0.8	63.6±1.0
	SP-AGCL	75.9±0.4	75.3±0.5	73.5±0.6	72.1±1.1	66.0±1.5	69.6±0.9	75.0±1.1	73.5±1.0	72.4±1.1	60.6±1.1	65.6±0.9
	GRACE-MLP	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2	82.4+0.2
	GRACE	85.9±0.1	81.3±0.2	78.2±0.4	76.1±1.3	73.9±1.7	71.3±2.6	80.7±0.1	76.8±0.2	73.5±0.1	71.4±0.2	69.0±0.3
Pubmed	GCA	86.5+0.2	81.2+0.5	78.1+0.5	75.9+1.2	74.2+0.4	72.0+1.8	80.7+0.2	76.7+0.3	73.2+0.3	70.9+0.2	68.6+0.3
	BGRL	85.1±0.2	81.3±0.3	79.0±0.4	76.6±0.9	74.8±0.9	73.0±0.5	80.6±0.4	77.5±0.4	74.5±0.6	72.4±0.7	70.3±0.6
	DGI-ADV	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	ARIEL	81.2±0.4	77.8±0.3	75.8±0.4	74.0±0.5	72.3±0.5	70.7±0.3	77.8±0.5	75.9±0.5	74.1±0.6	72.3±0.6	70.8±0.5
	SP-AGCL	85.5±0.3	81.9±0.2	79.7±0.3	77.4±0.3	75.6±0.3	73.3±0.3	81.9±0.2	79.6±0.3	77.1±0.4	75.1±0.5	72.8±0.5
	GRACE-MLP	87 2+0 8	87.2+0.8	87 2+0 8	87 2+0 8	87.2+0.8	87 2+0 8	87 2+0 8	87 2+0 8	87 2+0 8	87 2+0 8	87 2+0 8
	GRACE	92.0+0.4	895+05	88 3+1 1	87.6+0.9	87 5+1 2	87 1+1 9	88.6+0.4	87 5+0 8	873+08	86.6+1.0	85.6+1.1
Am Photo	GCA	92 2+0 4	894+06	883+08	87.8+0.7	87.6+1.0	87 5+0 7	887+06	88.0+0.7	87 8+1 4	873+09	86 4+1 2
Aller noto	BGRL	92.210.4	892+0.6	88 7+0 5	88 8+0 5	89.0+0.7	89 2+0 4	894+05	88 3+0.6	88 2+0 6	87.6+0.5	873+06
	DGI-ADV	91.6+0.5	83 5+0 5	80 7+0 6	793+06	78 1+0.6	77 3+0.6	83.6+0.5	80.8±0.5	79 5+0 5	78.0+0.6	77 4+0 4
	ARIEL	92.5+0.2	90.1+0.4	89.9+0.5	89.9+0.5	89.9+0.5	89.8+0.6	89.7+0.4	89.1+0.3	88.6+0.2	88.6+0.4	88.4+0.3
	SP-AGCI	93.3+0.3	91.4+0.5	90.6+0.6	90.5+0.8	90.2+0.9	89.8+1.0	90.3+0.4	89.3+0.3	88.7+0.5	88.2+0.7	87.6+0.5
	51 11002			20102010			00102110		00102010	0000 2000	00122017	07102010
	GRACE-MLP	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4	82.7±0.4
	GRACE	86.4±0.5	83.7±0.3	82.5±0.6	81.3±0.5	80.3±0.7	78.8±1.0	84.0±0.3	83.6±0.4	82.8±0.3	82.0±0.9	81.7±0.6
Am.Comp	GCA	86.6±0.4	84.6±0.4	83.4±0.3	82.3±0.4	81.4±0.4	80.1±0.5	84.5±0.3	83.8±0.4	82.8±0.2	82.3±0.8	82.0±0.4
	DOLADY	88.0±0.4	85.2±0.6	84.2±0.6	83.7±0.6	83.3±0.7	83.4±0.6	85./±0./	85.0±0.6	84.1±0.6	83.8±0.7	83.4±0.5
	ADIEL	00M	95.4±0.5	PA E+0.4	00M	00M	00M	00M	PA C+0 A	00M	00M	00M
	SD-ACCI	07.410.4	86 0+0 3	04.510.4	05.010.4	85.0:0.5	84 8+0 7	87.2+0.3	04.010.4	85 1.0 5	03.010.4	84 1+0 6
	SPACE	07.110.4	00.910.5	03.010.3	03.110.4	03.010.3	04.010.7	07.210.3	03.710.4	03.110.3	04.410.4	04.110.0
	GRACE-MLP	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2	92.1±0.2
a a	GRACE	92.3±0.2	91.2±0.1	90.6±0.2	90.0±0.2	89.4±0.1	88.9±0.2	91.2±0.3	90.4±0.3	89.7±0.4	89.3±0.4	88.7±0.4
Co.CS	GCA	92.5±0.1	91.4±0.2	90.7±0.2	90.2±0.2	89.7±0.2	89.3±0.1	91.4±0.2	90.8±0.3	90.0±0.3	89.6±0.3	89.0±0.3
	BGRL	92.4±0.2	91.3±0.1	90.5±0.2	89.9±0.2	89.3±0.2	88.7±0.2	91.3±0.2	90.5±0.2	89.8±0.3	89.4±0.3	88.8±0.2
	DGI-ADV	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	ARIEL	92.3±0.2	91.0±0.1	90.2±0.2	89.6±0.3	88.8±0.2	88.1±0.2	90.8±0.1	90.1±0.3	89.2±0.2	88.7±0.2	87.9±0.1
	SP-AGCL	93.7±0.2	92.9±0.2	92.8±0.2	92.5±0.2	92.4±0.1	92.3±0.2	92.7±0.1	91.9±0.2	91.2±0.2	90.6±0.2	89.9±0.2
	GRACE-MLP	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	GRACE	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Co.Physics	GCA	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	BGRL	95.2±0.1	94.1±0.2	93.2±0.2	92.5±0.1	91.6±0.2	91.0±0.1	94.2±0.1	93.2±0.2	92.5±0.1	91.6±0.1	91.0±0.2
	DGI-ADV	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	ARIEL	95.1±0.1	93.2±0.2	92.4±0.2	91.6±0.2	90.7±0.3	90.2±0.2	93.9±0.1	93.3±0.1	92.6±0.2	91.8±0.2	91.4±0.2
	SP-AGCL	95.8±0.1	94.9±0.2	94.4±0.1	93.6±0.1	93.0±0.1	92.5±0.1	95.0±0.1	94.2±0.1	93.3±0.2	92.4±0.1	91.7±0.1

Preserving Feature Similarity is beneficial !

- SP-AGCL preserves the node feature similarity, which results in the robust graph representation.
- SP-AGCL consistently predicts reliable links compared with other baselines across all the perturbation ratios.
 - Moreover, ARIEL, the sota AGCL model, shows the worst performance

Node feature information is beneficial to predicting reliable links since nodes with similar features tend to be adjacent in many real-world graphs.

Preserving Feature Similarity is beneficial !

- SP-AGCL outperforms baselines, especially ARIEL, on the node clustering tasks.
- The representations of ARIEL are separable but widely distributed \rightarrow vague class boundaries.
- The representations of SP-AGCL are tightly grouped together → more separable class boundaries.
 - Reason of the superior performance of node clustering tasks.
- Why?
 - Node feature information is highly related to class information.
 - The AT of ARIEL loses the node feature information, which is preserved in SP-AGCL.

The node feature similarity is useful for the real-world graphs

	Chameleon	Squirrel	Actor	Texas	Wisconsin	Cornell
GRACE	46.6±2.8	35.2±1.0	29.5 ± 0.5	61.1±6.5	55.3±5.5	61.1±5.0
GCA	50.0 ± 3.0	37.1±1.8	29.3±0.8	60.0 ± 6.3	55.7 ± 8.0	59.5 ± 3.8
BGRL	57.1±3.6	40.6 ± 1.6	31.0 ± 1.2	61.6 ± 6.0	57.7 ± 5.2	57.8 ± 4.7
DGI-ADV	53.4 ± 2.2	40.1±1.6	26.5 ± 0.9	58.4 ± 6.1	57.3±4.9	60.5 ± 5.8
ARIEL	44.3±2.4	36.8±1.2	29.6±0.3	58.4 ± 4.7	53.3±7.2	57.8±4.4
SP-AGCL	57.5±2.5	41.1±1.9	32.3±1.3	64.9±6.8	58.4±5.5	64.3±3.6

Table 2: Node classification on heterophilous graphs.

- In heterophilous networks, nodes with dissimilar properties (e.g., node features and labels) are connected.
 Similar to the properties of the adversarial attacks on graph structures.
- SP-AGCL outperforms the other baselines on heterophilious graphs.
- ARIEL perform worse than GRACE \rightarrow AT fails to preserve the node feature similarity.

The feature similarity should be preserved when the given structural information is not informative

The node feature similarity is useful for the real-world graphs

Figure 4: Node classification with noisy label.

- We compare SP-AGCL with both supervised (i.e., RGCN, ProGNN, and SimP-GCN) and AGCL methods.
- We observe that SP-AGCL outperforms both supervised and unsupervised methods.
 - Supervised methods rely on the noisy supervision information.
 - Better exploiting feature information results in more robust node representations.

Conclusion

 In this paper, we discover that adversarial GCL models <u>obtain robustness against adversarial attacks at the expense of</u> <u>not being able to preserve the node feature similarity information.</u>

 Based on our findings, we propose <u>SP-AGCL that learns robust node representations that preserve the node feature</u> <u>similarity</u> by introducing the similarity preserving view.

 We verify the effectiveness of SP-AGCL by conducting extensive experiments on <u>thirteen</u> benchmark datasets with <u>multiple attacking scenarios</u> along with several real-world scenarios such as networks with <u>noisy labels and</u> <u>heterophily</u>.

Similarity Preserving Adversarial Graph Contrastive Learning

Yeonjun In*, Kanghoon Yoon*, Chanyoung Park

Department of Industrial & Systems Engineering KAIST {yeonjun.in, ykhoon08, cy.park}@kaist.ac.kr