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Extrapolation

2

§ Goal: Predict unseen data outside the training distribution
§ Extrapolation is challenging because the input data usually follows an unknown distribution
§ However, extrapolation is common in scientific applications in which discovering unobserved scientific 

knowledge is crucial

Training
distribution

Training samples

Unknown
distribution

New structures

O
bs

er
ve

d 
va

lu
e

Time

Trained patterns Unknown patterns

Material discovery Time-series forecasting
(e.g., geomagnetic storm, network attack, and chemical spectrum)



Formal Definition of Extrapolation in Machine Learning

§ Given: Prediction model 𝑓:𝒳 → ℝ trained on a training distribution 𝒟
§ Goal: Minimize the following extrapolation error 𝐿#

3

- (𝒙, 𝑦): A sample from out of training distribution 𝒳\𝒟

§ Machine learning achieved remarkable extrapolation performance in computer vision [1, 2]
§ However, extrapolation in scientific applications is still far from satisfactory [3, 4]

𝐿! = 𝔼 𝒙,$ ~𝒳\𝒟[𝐿)(𝑦, 𝑓 𝒙 )]
Loss function (Cross entropy, MSE)

Target responseInput data

Prediction model

Extrapolation 
Error

Training distribution

Data distribution



Why is Extrapolation Difficult in Scientific Data?

Crystal structures Band gaps (eV)SiO! (Trigonal, 162)

SiO! (Trigonal, 167) 4.51

TiFe! (Hexagonal, 194)

0

Two similar structures have completely different physical properties, 
whereas two completely different structures have the same physical property
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§ Nonlinear input-to-target relationship
§ Physical and chemical systems have severe nonlinear relationships with their properties.



Image Dataset vs. Scientific Dataset
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§ T-SNE plots of MNIST and Material Project (MP) datasets
§ Each point indicates an image or a material with target response (label) denoted by colors.

§ MNIST: class label
§ MP dataset: band gap

Similar images share similar labels Similar materials do not 
necessarily share similar labels



How Neural Networks Extrapolate (Xu et al, ICLR21)
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§ Theoretical findings in extrapolation: Neural networks with ReLU → simple linear regression in the 
extrapolation regime [7]

MLPs converge to linear functions outside the training data range

Xu, Keyulu, et al. "How neural networks extrapolate: From feedforward to graph neural networks." ICLR 2021

Function we want to 
approximate

Model prediction in 
extrapolation regime

Extrapolation

§ Proposed solution: Remove nonlinearity from the data itself to linearize the problem
§ Limitation: Requires domain knowledge to remove nonlinearity, and task-specific / data-specific



Related Work on Extrapolation

§ Representation learning [5]
§ Pros: Universally applicable method
§ Cons: Constraints on data distributions

§ Transfer learning [6]
§ Pros: Problem-specific methods, goal-directed learning
§ Cons: Source datasets, similar data distributions, re-training

§ Graph reformulation [7]
§ Pros: Easy to implement, theoretical backgrounds

§ Cons: Manual reformulation, white-box systems
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Most existing studies mainly focus on supporting extrapolation rather than learning extrapolation models

Can we learn extrapolation models?



Can we learn extrapolation models? 
: Image Dataset vs. Scientific Dataset
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§ Heatmap visualization of within- and between-class distances on benchmark image and materials datasets

Prediction task (Classification) DifficultEasy

Image Scientific dataset

Within-class distance (Diagonal) LargeSmall

Prediction tasks can be made easier when,
Two inputs with same label à Small input distance

Distance 
Consistency!



Distance Consistency (DC)
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§ Consistency w.r.t. the distance between the inputs and their target responses
§ e.g., images > materials

§ Extend our argument from classification to regression
§ Assume: Classification with infinite number of classes ≈ regression

Linear regression on synthetic datasets 

High distance consistency à High accuracy (𝑅" score) à Input-to-target relationship is made simple 

𝑅! 𝑅!

𝑅! 𝑅!

𝑅
!



Problem Reformulation of Extrapolation
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§ We reformulate the extrapolation problem as a representation learning problem aiming to linearize the 
input-to-target relationships

Extrapolation
Representation 

Learning

§ Our goal: Increase the distance consistency aiming at simplifying the input-to-target relationships

𝑑(𝑑 𝒙!, 𝒙" − 𝑑 𝑦!, 𝑦" ) (
!#$

%
(

"#$

%
𝑑(𝑑 𝒙!, 𝒙" − 𝑑 𝑦!, 𝑦" )

§ Given: Two pairs of data samples 𝒙! , 𝑦! , (𝒙" , 𝑦")

§ Define: The distance between them

`
Consider all 
𝑁8 pairs

We adopt Wasserstein distance to measure the 
distance consistency between input and target

Dist. btw. inputs

Dist. btw. targets



Nonlinearity Encoding based on Wasserstein Distance

§ For a set of probability measures Π on Ω×Ω, Wasserstein distance is defined by an optimization problem as:
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𝑊# = inf
$∈&

8
'×'

𝐱 − 𝐲 #𝜋 𝐱, 𝐲 d𝐱d𝐲
)/#

§ However, there is a problem in applying Wasserstein distance in our task
§ Wasserstein distance is defined only for the data distributions of the same dimensionality.

Why Wasserstein distance? 
Many scientific data has unknown and arbitrary shaped distributions

§ Our task: Regression
§ Input: Vector (∈ ℝ+)
§ Target: Scalar (∈ ℝ)

Dimension mismatch!



Nonlinearity Encoding based on Wasserstein Distance

§ Instead, we define distance distribution to apply Wasserstein distance between two distributions of 
different dimensions
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Definition) For a 𝑛-dimensional space 𝒳 ⊆ ℝ,, distance distribution 𝓚 is defined as a probability 
distribution of pairwise distances 𝒅(𝒙, 𝒙-) for all (𝒙, 𝒙-) ∈ 𝒳×𝒳, where 𝑑:𝒳×𝒳 → [0,∞) is a distance metric.

𝑊# = inf
$∈&

8
'×'

𝐱 − 𝐲 #𝜋 𝐱, 𝐲 d𝐱d𝐲
)/#

𝑊)(𝒦. , 𝒦/; 𝜋, 𝜃) = inf
$∈&

8
ℳ×ℳ

𝑟 − 𝑢 𝜋 𝑟, 𝑢 d𝑟d𝑢

𝑟 = 𝑑 𝜙 𝐱; 𝜃 , 𝜙 𝐱9; 𝜃 : Dist. btw input data in embedding space
𝑢 = 𝑑(𝑦, 𝑦9): Dist. btw target data

•
•

Distance consistency btw input and target!

Our goal: Maximize the distance consistency between input and target
à The distance between two inputs should be determined based on the distance between their targets

(𝑝 = 1)



Problem Definition of Nonlinearity Encoding

Mixed data
distribution

Data distribution in the original feature space Data distribution in the embedding space of ANE

Nonlinearity 
Encoding

§ Our method: Automatic Nonlinearity Encoding (ANE)

Hard Easy



Optimization: Decomposition of Lagrangian

§ Our problem can be defined as follows:
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§ We can define a Lagrangian of the objective function as (refer Kantorovich-Rubinstein duality [6]):

Joint optimization
w.r.t. 𝜽 and 𝝅

𝑟:; = 𝑑 𝜙 𝐱:; 𝜃 , 𝜙 𝐱;; 𝜃 : Dist. btw input data in embedding space

𝑢:; = 𝑑(𝑦:, 𝑦;): Dist. btw target data
•
•

𝜃∗ = argmin
2

R
!3)

4
R

"3)

4
inf
$∈&

8
ℳ×ℳ

𝑟!" − 𝑢!" #
𝜋 𝑟!" , 𝑢!" d𝑟d𝑢

# training data

𝐿" = ∑($,&)∈𝒩∑ *,+ ∈𝒩\-!" 𝑟$& − 𝑢*+ − 𝑓 𝑟$& − 𝑔 𝑢*+ 𝜋(𝑟$& , 𝑢*+) + ∑($,&)∈𝒩∑ *,+ ∈𝒩\-!" 𝑟$& − 𝑢*+ 𝜋(𝑟$& , 𝑢*+)

+∑($,&)∈𝒩 𝑝 𝑟$& − ∑ *,+ ∈-!" 𝜋 𝑟$& , 𝑢*+ 𝑓(𝑟$&) + ∑($,&)∈𝒩 𝑝 𝑢$& − ∑ *,+ ∈𝒩 𝜋 𝑟*+ , 𝑢$& 𝑔(𝑢$&) + ∑($,&)∈𝒩∑ *,+ ∈𝒩\-!" 𝜋 𝑟*+ , 𝑢$& 𝑔(𝑢$&),

where 𝒩 = 𝑖, 𝑗 for all 𝑖, 𝑗 ∈ {1, 2, … ,𝑁}}, and 𝐼:; = 𝑘, 𝑞 𝑢:; = 𝑢<= for (𝑘, 𝑞) ∈ 𝒩}.

Pairs with the same target distance 



Optimization: Model Parameter Optimization
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𝑟:; = 𝑑 𝜙 𝐱:; 𝜃 , 𝜙 𝐱;; 𝜃 : Dist. btw input data in embedding space

𝑢:; = 𝑑(𝑦:, 𝑦;): Dist. btw target data
•
•

Enforce distance consistency 
between data pairs!

§ In the end, the representation learning problem to encode the nonlinearity is given by:

𝜃∗ = argmin
2

R
!3)

4
R

"3)

4
inf
$∈&

8
ℳ×ℳ

𝑟!" − 𝑢!" #
𝜋 𝑟!" , 𝑢!" d𝑟d𝑢

𝜃∗ = argmin
2
R

!3)

4
R

"3)

4
𝑟!" − 𝑢!"



Optimization: Model Parameter Optimization

ANE

Training dataset
𝒟 = { 𝐱., 𝐲. , … , (𝐱/ , 𝐲/}

Training of ANE-based prediction model

Training dataset with
nonlinearity encoding

𝒵 = { 𝜙(𝐱.; 𝜃∗), 𝐲. , … , (𝜙(𝐱/; 𝜃∗), 𝐲/}

Prediction 
model

16

ANE

Prediction 
model

Data-agnostic!



Experiments

§ Matrix-shaped data
§ Graph-structured data
§ Time-series data



§ Task: Given mass, position, and velocity of 𝑛 particles, estimate future velocities of 𝑛 particles

Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (1/3)

Physical system of
𝑛 = 3 particles at 𝑡

Position: 𝑥(1), 𝑦(1), 𝑧(1)

Velocity: 𝑣2
(1), 𝑣3

(1), 𝑣4
(1)

Physical system of
𝑛 = 3 particles at 𝑡 + 1

Prediction of
the next state
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§ Data preprocessing: 3-dimensional 3-body problem. 𝒙5 ∈ ℝ6×7 and 𝒚5 ∈ ℝ6×6 ß Matrix-shaped data
§ Simulated 10 datasets
§ Train: Observations in time [0, 80] 
§ Test: Predict velocity in future time (80, 100]

Mass: 𝑚(1)

Position: 𝑥(15.), 𝑦(15.), 𝑧(15.)

Velocity: 𝑣2
(15.), 𝑣3

(15.), 𝑣4
(15.)

Mass: 𝑚(15.)

𝑑-dimension 𝑑-dimension



Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (2/3)
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Direct prediction method GNN-based methods Metric learning-based method

§ Metric: Distance correlation (Corr) between the simulated (ground-truth) and predicted velocities 
§ To measure how accurately the models predict future trends of the velocities

ANE generates input representations that are the most effective to reducing the extrapolation errors



Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (3/3)
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State-of-the-art GNN-based method Ours (ANE-F)



Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (3/3)
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State-of-the-art GNN-based method Ours (ANE-F)

ANE is better at predicting sudden explosions of velocity



§ Task: Predict four material properties (Formation energy, Band gap, Shear modulus, Bulk modulus)
§ Discovering novel materials is a fundamental task in various fields (e.g., semiconductor and renewable energy)

Extrapolation on Graph-Structured Data: Materials Property Prediction

𝒱: A set of nodes (atoms)
𝒰: A set of edges (bondings)
𝐗: Node feature matrix
𝐄: Edge feature matrix

Prediction 
model

Physical and chemical
properties of materials
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A material can be represented as an attributed graph 𝐺 = (𝒱,𝒰, 𝐗, 𝐄).

§ Data preprocessing
§ MPS dataset: Benchmark materials dataset containing 3,162 materials
§ Train: Materials that contain only two types of elements (i.e., Binary materials)
§ Test: Materials that contain three/four types of elements (i.e., Ternary and quaternary materials)



23

Extrapolation on Graph-Structured Data: Materials Property Prediction

§ Metric: 𝑅8 score

ANE-MPNN outperforms state-of-the-art GNNs and metric learning methods



§ Task: 1) Predict geomagnetic storm, 2) Detect geomagnetic storm

Extrapolation on Time-Series Data: Geomagnetic Storm Forecasting
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ANE-GRU outperforms GRU, and ANE achieved further improvement over metric learning-based approaches

Task 1 Task 2 Vanilla GRU Ours (ANE-GRU)

§ Data preprocessing
§ Dataset: MagNet NASA dataset
§ 1-year geomagnetic storm data is divided into 4 sequential periods (¾ used for training, ¼ used for test)



§ Proposed a data-agnostic embedding method for improving the extrapolation capabilities of ML

Conclusion

§ Maximized distance consistency between the inputs and their targets (Based on Wasserstein distance)
§ The distance between two inputs should be determined based on the distance between their targets

§ Demonstrated the effectiveness in various scientific applications of various data formats 
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§ Contact: ngs0@krict.re.kr / cy.park@kaist.ac.kr
§ Source code: https://github.com/ngs00/ane
§ Lab homepage: https://dsail.kaist.ac.kr/

Thank you!
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Optimization: Decomposition of Lagrangian
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+∑(!,")∈𝒩∑ =,> ∈?!" 𝑟!" − 𝑢=> 8
𝜋(𝑟!" , 𝑢=>)

𝐿@ = ∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝑟!" − 𝑢=> 8
− 𝑓 𝑟!" − 𝑔 𝑢=> 𝜋(𝑟!" , 𝑢=>)

+∑(!,")∈𝒩 𝑝 𝑟!" − ∑ =,> ∈?!" 𝜋 𝑟!" , 𝑢=> 𝑓(𝑟!") +∑(=,>)∈𝒩 𝑝 𝑢=> − ∑ !," ∈𝒩 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

+∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

Part 1

Part 2

Part 3



Optimization: Decomposition of Lagrangian
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+∑(!,")∈𝒩∑ =,> ∈?!" 𝑟!" − 𝑢=> 8
𝜋(𝑟!" , 𝑢=>)

𝐿@ = ∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝑟!" − 𝑢=> 8
− 𝑓 𝑟!" − 𝑔 𝑢=> 𝜋(𝑟!" , 𝑢=>)

+∑(!,")∈𝒩 𝑝 𝑟!" − ∑ =,> ∈?!" 𝜋 𝑟!" , 𝑢=> 𝑓(𝑟!") +∑(=,>)∈𝒩 𝑝 𝑢=> − ∑ !," ∈𝒩 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

+∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

Part 1

Best choice of the joint probability 𝝅? 
Set 𝜋 𝑟!", 𝑢&' = 0 for all (𝑖, 𝑗) ∈ 𝒩 and 𝑘, 𝑞 ∈ 𝒩\𝐼!"

(i.e., If two pairs of data ((i,j) and (k,q)) and do not have the same target distance, then the joint probability is 0)

∵ 𝑟!" − 𝑢=> − 𝑓 𝑟!" − 𝑔(𝑢=>) ≥ 0 by the constraint in Lagrangian multipliers (1-Lipschitz constraint)

0



Optimization: Decomposition of Lagrangian
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+∑(!,")∈𝒩∑ =,> ∈?!" 𝑟!" − 𝑢=> 8
𝜋(𝑟!" , 𝑢=>)

𝐿@ = ∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝑟!" − 𝑢=> 8
− 𝑓 𝑟!" − 𝑔 𝑢=> 𝜋(𝑟!" , 𝑢=>)

+∑(!,")∈𝒩 𝑝 𝑟!" − ∑ =,> ∈?!" 𝜋 𝑟!" , 𝑢=> 𝑓(𝑟!") +∑(=,>)∈𝒩 𝑝 𝑢=> − ∑ !," ∈𝒩 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

+∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

Part 2

π(𝑟YZ, 𝑢[\) is always zero under the optimized embedding function 𝝓((; 𝜽∗).

0



Optimization: Decomposition of Lagrangian
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+∑(!,")∈𝒩∑ =,> ∈?!" 𝑟!" − 𝑢=> 8
𝜋(𝑟!" , 𝑢=>)

𝐿@ = ∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝑟!" − 𝑢=> 8
− 𝑓 𝑟!" − 𝑔 𝑢=> 𝜋(𝑟!" , 𝑢=>)

+∑(!,")∈𝒩 𝑝 𝑟!" − ∑ =,> ∈?!" 𝜋 𝑟!" , 𝑢=> 𝑓(𝑟!") +∑(=,>)∈𝒩 𝑝 𝑢=> − ∑ !," ∈𝒩 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

+∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)
Part 3

Always zero by 
𝑝 𝑟!" = ∑(&,')∈,>? 𝜋(𝑟!", 𝑢&'), 
𝑝 𝑢&' = ∑(!,")∈,@A 𝜋(𝑟!", 𝑢&'), 

and 𝜋 𝑟!", 𝑢&' = 0 for all (𝑖, 𝑗) ∈ 𝒩 and 𝑘, 𝑞 ∈ 𝒩\𝐼!". ß From Part 1

0



Optimization: Decomposition of Lagrangian
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+∑(!,")∈𝒩∑ =,> ∈?!" 𝑟!" − 𝑢=> 8
𝜋(𝑟!" , 𝑢=>)

𝐿@ = ∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝑟!" − 𝑢=> 8
− 𝑓 𝑟!" − 𝑔 𝑢=> 𝜋(𝑟!" , 𝑢=>)

+∑(!,")∈𝒩 𝑝 𝑟!" − ∑ =,> ∈?!" 𝜋 𝑟!" , 𝑢=> 𝑓(𝑟!") +∑(=,>)∈𝒩 𝑝 𝑢=> − ∑ !," ∈𝒩 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

+∑(!,")∈𝒩∑ =,> ∈𝒩\?!" 𝜋 𝑟!" , 𝑢=> 𝑔(𝑢=>)

Part 1

Part 2

Part 3

Hence, one possible optimal joint probability 𝜋∗ is given as:

𝜋 𝑟!", 𝑢&' = 0 for all (𝑖, 𝑗) ∈ 𝒩 and (𝑘, 𝑞) ∈ 𝒩\𝐼!" but ∑(!,")∈𝒩∑(&,')∈,>? 𝜋 𝑟!", 𝑢&' = 1

Given data pairs that do not have the same target distance, 
setting their joint probability to zero is one possible solution

(𝜋 should be a valid probability distribution)



Optimization: Model Parameter Optimization

§ For the optimal joint probability 𝜋∗, the training problem of ANE is simplified as:

34

# data pairs that share the same target distance with (𝑖, 𝑗)

§ The joint probability 𝜋!" can be empirically estimated by the i.i.d. condition as:

𝜃∗ = argmin
/
∑!#$% ∑0#$% |𝐼!"| 𝑟!" − 𝑢!" 𝜋!"∗ .

§ Therefore, the representation learning problem to encode the nonlinearity is given by:

𝜋!" =
$

∑BCD
E ∑FCD

E |,BF|
, and |𝐼!"| ≪ ∑3#$% ∑4#$% |𝐼34|.

𝜃∗ = argmin
2
R

!3)

4
R

"3)

4
𝑟!" − 𝑢!" 8

𝑟:; = 𝑑 𝜙 𝐱:; 𝜃 , 𝜙 𝐱;; 𝜃 : Dist. btw input data in embedding space

𝑢:; = 𝑑(𝑦:, 𝑦;): Dist. btw target data
•
•

Enforce distance consistency between data pairs



Optimization: Decomposition of Lagrangian
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Alternating optimization

min
2
R

!3)

4
R

"3)

4
8
ℳ×ℳ

𝑟!" − 𝑢!" #
𝜋∗ 𝑟!" , 𝑢!" d𝑟d𝑢

Optimize model parameters 𝜃

inf
$∈&

R
!3)

4
R

"3)

4
8
ℳ×ℳ

𝑟!"∗ − 𝑢!" #
𝜋 𝑟!"∗ , 𝑢!" d𝑟d𝑢

Optimize joint probability 𝜋

Fix model parameters 𝜃 Fix joint probability 𝜋



Decomposition of Lagrangian: Full derivation



§ Task: Predict band gaps of perovskites 
§ c.f.) Perovskite has received significant attention as solar cell materials for renewable energy
§ Infer materials properties of crystal structures containing unseen elemental combinations

§ Data preprocessing
§ Divided HOIP dataset by eliminating the materials that contain specific elements

§ HOIP-HIGH: HOIP – (Germanium (Ge) and Fluorine (F))
§ HOIP-LOW: HOIP – (Lead (Pb) and Iodine (I))

§ Range of band gaps between training and test data is completely different

ANE for Discovering Solar Cell Materials



§ Metric: 𝑅8 score

ANE for Discovering Solar Cell Materials

Vanilla GCN Ours (ANE-MPNN)

ANE-MPNN roughly captured the relationships, while GCN fails to do so

N/A: negative 𝑅8



§ Time complexity of the training process of ANE: 𝜃∗ = argmin
2
∑!3)4 ∑B3)4 𝑟!" − 𝑢!" → 𝐎(𝑵𝟐)

§ Three sampling strategies to reduce the time complexity:
§ Random sampling: selecting a data point randomly at each iteration
§ 𝒌-NN sampling: selecting 𝑘 nearest data points for an anchor data
§ Hardness sampling: selecting 𝑘 data points based on the training errors (top-𝑘 largest errors)

Sampling Strategies and Extrapolation

Random sampling performs the best despite its simplicity 
(∵ Random sampling = Density-based sampling)


