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ABSTRACT
Extrapolation to predict unseen data outside the training distribu-
tion is a common challenge in real-world scientific applications of
physics and chemistry. However, the extrapolation capabilities of
neural networks have not been extensively studied inmachine learn-
ing. Although it has been recently revealed that neural networks
become linear regression in extrapolation problems, a universally
applicable method to support the extrapolation of neural networks
in general regression settings has not been investigated. In this
paper, we propose automated nonlinearity encoder (ANE) that is a
data-agnostic embedding method to improve the extrapolation ca-
pabilities of neural networks by conversely linearizing the original
input-to-target relationships without architectural modifications of
prediction models. ANE achieved state-of-the-art extrapolation ac-
curacies in extensive scientific applications of various data formats.
As a real-world application, we applied ANE for high-throughput
screening to discover novel solar cell materials, and ANE signifi-
cantly improved the screening accuracy.
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1 INTRODUCTION
Extrapolation to approximate input-to-target relationships of un-
seen data outside the training distribution is one of the most chal-
lenging problems in machine learning [33, 41, 46]. At the same
time, extrapolation problems are common in real-world applica-
tions, such as classifying noisy images [42] and forecasting new
patterns [32]. In particular, being able to extrapolate is at the core
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(a) MNIST dataset (b) MP dataset
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Figure 1: t-SNE plots of MNIST and MP datasets. Each point
is an image or amaterial with class labels denoted by colors.

of discovering new scientific knowledge and novel chemical com-
pounds in many scientific applications, such as physical dynamics
interpretation [13], drug discovery [38], and inverse design of ma-
terials [28]. For example, it is crucial to accurately predict toxicities
and aqueous solubility of newly-designed molecular structures to
develop safe and reliable drugs [38].

In this paper, we focus on the extrapolation capabilities of ma-
chine learning methods. Formally, for a given prediction model
𝑓 : X → R trained on a training distribution D, we consider 𝑓 to
extrapolate well if it has a small extrapolation error 𝐿𝑒 as:

𝐿𝑒 = E(x,y)∼X\D [𝐿𝑠 (y, 𝑓 (x))] , (1)

where x ∈ X is an input data sample, 𝑦 ∈ R is a target response of
x, and 𝐿𝑠 : R × R→ R is a loss function to measure the prediction
error. To facilitate the extrapolation, various training strategies
and network architectures have been proposed. However, most
existing methods are limited to classification problems, and impose
apriori assumptions such as white-box systems [33] and symmetric
data domain [41]. In particular, despite previous efforts in machine
learning extrapolation on image datasets [4, 40], extrapolation in
scientific applications is still far from satisfactory [23, 24]. As an
example, materials science is one of the largest scientific fields
where extrapolation using machine learning is still questionable
[24], as shown in the experimental evaluations on the most well-
known benchmark Materials Project (MP) dataset [14].

In order to tackle the extrapolation in machine learning, Xu et al.
[46] proposed an extrapolation strategy that encodes nonlinearities
into the input representation, based on the theoretical analysis that
neural networks with ReLU activation become linear regression on
X \D, i.e., outside the training distribution. By doing so, the input-
to-target relationships were simplified, which in turn improved
the extrapolation accuracy in several scientific applications. This
result implies that a simple input-to-target relationship is essential
in machine learning extrapolation. However, we argue that such a
nonlinearity encoding process lacks generalizability owing to the
fact that the encoding of nonlinearities is task-dependent, i.e., nonlin-
earities should be carefully encoded into the input representations for
each application (or equivalently data) at hand. Therefore, we need
an encoding method to automatically simplify the input-to-target
relationships regardless of the prediction problems.
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(a) MNIST dataset (b) CIFAR10 dataset (c) MP dataset

Figure 2: Heatmap visualization of within- and between-
class distances on benchmark image and materials datasets.
The classification tasks become more challenging from (a)
MNIST to (c) MP datasets, and the classification accuracies
dropped from 99.36% to 77.12% accordingly.

To conceptually describe the simplicities of the input-to-target re-
lationships, first, we compare t-SNE plots of MNIST dataset [2] and
MP dataset [14] in Fig.1. Each point1 represents an image (Fig.1a)
and a crystal structure of the material (Fig.1b), respectively, and the
colors indicate their target responses, i.e., label for MNIST and band
gap for MP2. We observe that images are well-separated according
to their labels whereas materials are not. This is expected since it is
natural for similar images to share similar labels. e.g., two slightly
different digit-4s are located close to each other, whereas in MP
dataset, similarity in the input does not always imply similarity in
the target response, and vice versa. For example, SiO2 (225) and SiO2
(136) have completely different band gaps (2.00 eV and 5.50 eV) de-
spite their highly similar crystal structures, while SiO2 (136) and BN
(186) have almost the same band gaps (5.50 eV and 5.36 eV) despite
their completely different composition and crystal structures.

To elaborate our observations in Fig. 1, we calculate the average
pairwise input distance within a class (i.e., within-class distance)
and between different classes (i.e., between-class distance) for three
datasets in Fig. 2. We observe that the within-class distances (i.e.,
diagonal) are generally smaller than the between-class distances
(i.e., off-diagonal) in MNIST dataset of Fig. 2a, and such a trend
gradually vanishes as we move from Fig. 2b (CIFAR10) to Fig. 2c
(MP). Note that it is widely known that classification in CIFAR10
dataset is generally more challenging than in MNIST dataset, which
can be explained by the differences between the tendencies of the
within- and between-class distances in Fig. 2a and 2b. Besides, the
difficulty of classification on MP dataset, which is challenging to
achieve 77.12% classification accuracy, can be also explained by Fig.
2c. In this regard, we suppose that prediction tasks can be made
easier by enforcing the distance between inputs having the same
target smaller.

We can extend our argument to the regression tasks by assuming
that the number of classes in the classification tasks is infinite and
the classes are ordered. In this case, we argue that the regression
problem can be simplified by enforcing the distance between inputs
to be proportional to the distance between their corresponding
targets, and we refer to such a consistent relationship between the
input and target distances as distance consistency. To corroborate our
argument, we conduct linear regression on four synthetic datasets
whose distance consistencies are intentionally controlled, as shown

1The input representations are obtained by convolutional neural network (CNN) [21]
for MNIST and graph neural network (GNN) [20] for MP.
2Since band gap is a numerical value, we convert it to a categorical variable. Further
details are described in Appendix 1
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Figure 3: Regression accuracies of linear regression on syn-
thetic datasets for different distance consistency.

in Fig. 3. We observe that high distance consistency yields high R2
scores [22] of the linear regression, which implies that the input-
to-target relationships can also be made simpler by increasing the
distance consistency.

In this paper, we propose a novel automated nonlinearity en-
coder (ANE) for improving the extrapolation capabilities of machine
learning extrapolation in general regression tasks. The main idea is
to increase the distance consistency aiming at simplifying the input-
to-target relationships. More precisely, ANE encodes nonlinearities
of regression problems into the input embeddings by minimizing
the Wasserstein distance between the pairwise distances of the data
samples in the input and the target spaces. That is, ANE can be re-
garded as deep metric learning on regression settings. By applying
the trained ANE on a given dataset, the input-to-target relation-
ships of the regression problems are automatically simplified (i.e.,
distance consistency is maximized) so that neural networks can
extrapolate well. ANE is data-agnostic and generally applicable
to various scientific applications because there is no assumption
on prediction problems and data distributions. To demonstrate the
effectiveness of ANE in the extrapolation problems, we conduct
comprehensive experiments on various scientific applications with
different input data formats, such as n-body problem [31], crystal
graph regression [43], and geomagnetic storm forecasting [1]. As a
real-world scientific application, we applied ANE to discover novel
perovskite materials [17] that are getting much attention as solar
cell materials to overcome the global climate crisis. From our em-
pirical analysis, we demonstrate that ANE significantly reduces the
extrapolation errors of neural networks without manual feature
engineering and problem reformulation as done in [46].

2 RELATEDWORK
2.1 Machine Learning Extrapolation
Generalization refers to the ability of a machine learning model to
adapt to noisy and abnormal data drawn from the same distribution
as the one used to train the model. On the other hand, extrapolation
refers to ability of the trained models to adapt to data generated
from a completely unknown distribution [4, 33, 40, 46]. Universal
and different set domain adaptations methods were devised to pre-
dict target responses of unseen data from unknown domain [47].
Similarly, continual learning with new class emergence aims to
train a prediction model to accurately predict target responses of
the data from unseen classes [25]. However, these tasks are dis-
tinguished from the extrapolation problems in that they require
re-training of the model on the newly introduced data, whereas
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extrapolation is a prediction capability of the trained model for the
data from the data distributions outside the training distribution.
In addition, existing studies proposed several training strategies
and prediction networks to facilitate and support machine learning
extrapolation in various perspectives, such as representation learn-
ing [41], transfer learning [9, 15], and out-of-distribution detection
[16]. However, they are not applicable to the extrapolation prob-
lems on general regression settings because they are designed for
classification problems on discrete target values.

Most recently, Xu et al. [46] demonstrated through a theoret-
ical analysis that neural networks with ReLU activation become
linear regression in the extrapolation settings, and achieved state-
of-the-art extrapolation accuracies in several scientific applications.
Despite its success, its general applicability is limited to several
applications, because the input-to-target relationships should be
manually simplified for each task (or equivalently data) at hand.

2.2 Metric Learning on Regression Settings
Deep metric learning (DML) is a widely studied methodology in
computer vision to generate latent embeddings that simplify the
input-to-target relationships with supervision [34, 36, 48]. Various
loss functions to train embedding networks have been proposed in
DML, such as contrastive loss [7] and triplet loss [34]. Moreover,
sophisticatedly-designed loss functions are widely studied for multi-
class classification problems, such as 𝑁 -pair loss [36] and circular
loss [48]. However, although various metric learning losses have
been proposed in computer vision, most existing metric learning
methods were limited to discrete target values on image data, i.e.,
image classification tasks.

To extend the applicability of DML beyond the classification set-
tings, log-ratio loss (LRL) for continuous target values was proposed
for human pose detection tasks [18]. LRL evaluates the embedding
quality of data based on the log-ratio of the distances between the
input and target data. However, LRL cannot be readily applied to sci-
entific data that contain large measurement and calculation noises,
because it is numerically unstable to unexpected input values ow-
ing to the logarithm in the loss formulation [27]. To overcome the
numerical instability of LRL, smoothed log-ratio loss (SLRL) was
proposed by smoothing the logarithmwith an exponentiation based
approximation function [27]. SLRL achieved state-of-the-art pre-
diction accuracies in regression and classification tasks on several
molecular datasets. However, the embedding capabilities of LRL
and SLRL have not been evaluated on various data formats and
embedding networks in scientific applications.

3 PRELIMINARIES: WASSERSTEIN DISTANCE
For a 𝑛-dimensional measurable space Ω ⊆ R𝑛 and a set of proba-
bility measures Π on Ω × Ω, Wasserstein distance is defined by an
optimization problem as:

𝑊𝑝 =

(
inf
𝜋∈Π

∫
Ω×Ω

∥x − y∥𝑝2 𝜋 (x, y)dxdy
) 1
𝑝

, (2)

where x, y ∈ R𝑛 are data instances, and 𝜋 ∈ Π is a joint probability.
By solving the above optimization problem with respect to 𝜋 , we
can calculate the distance between the data distributions of x and y.
When 𝑝 = 1, 1-Wasserstein distance is also known as earth mover’s
distance (EMD) for optimal transportation problem [29]. Besides in

machine learning, Wasserstein distance has been widely used to
calculate the divergence between two unknown and nonparamet-
ric data distributions [3, 44]. In this study, we adopt Wasserstein
distance to measure the distance consistency between the input
and target spaces in scientific applications because most scientific
data is generated from unknown mixture distributions [27, 28].

4 METHOD
4.1 Problem Definition
Our goal is to develop an embedding method that matches data
distributions in the embedding and target spaces for improving
the extrapolation capabilities of the prediction models. Although
Wasserstein distance has been successfully applied to measure the
divergences of two data distributions in various machine learn-
ing applications, a direct integration of Wasserstein distance with
our embedding problem is not feasible because it assumes the
same dimensionality of two data spaces. To devise a generally-
applicable Wasserstein embedding loss regardless of the data di-
mensionality, first, we define a distance distribution that always
has 1-dimensionality for all regression problems as follows.

Definition 4.1. (informal) For a 𝑛-dimensional space X ⊆ R𝑛 ,
distance distribution K is defined as a probability distribution of
pairwise distances 𝑑 (x, x′) for all (x, x′) ∈ X × X, where 𝑑 : X ×
X → [0,∞) is a distance metric.

For the distance distributions K , Wasserstein distance is always
defined in 1-dimensional measurable space M ⊆ R regardless of
the dimensionalities of the input and target data. For the input data
x ∈ X and the target data y ∈ Y, Wasserstein distance between
the distance distributions is given by:

𝑊𝑝 (K𝑥 ,K𝑦 ;𝜋 ) =
(
inf
𝜋∈Π

∫
M×M

∥𝑣 −𝑢 ∥𝑝2 𝜋 (𝑢, 𝑣)d𝑢d𝑣
) 1
𝑝

, (3)

where 𝑣 = 𝑑 (x, x′) is the pairwise distance for (x, x′) ∈ X × X,
𝑢 = 𝑑 (y, y′) is the pairwise distance for (y, y′) ∈ Y × Y, and
𝜋 (𝑣,𝑢) is a joint probability of 𝑢 and 𝑣 . Note that K𝑥 and K𝑦 are
the distance distributions of the input and target data, respectively.

From the empirical analysis in Fig. 3, the embedding objective
of ANE to simplify the input-to-target relationships is defined as
the 1-Wasserstein distance between the distance distributions in
the embedding and target spaces as:

𝑊1 (K𝑥 ,K𝑦 ;𝜋, 𝜽 ) = inf
𝜋∈Π

∫
M×M

∥𝑟 −𝑢 ∥2𝜋 (𝑟,𝑢)d𝑟d𝑣, (4)

where 𝑟 = 𝑑 (𝜙 (x;𝜽 ), 𝜙 (x′
;𝜽 )) is the pairwise distance of the input

data in the embedding space, and 𝜙 : X → Z is an embedding
function parameterized by 𝜽 . The experimental results in Appen-
dix 6 will empirically demonstrate that an embedding network to
simplify (especially linearize) the input-to-target relationships can
be generated by minimizing the above loss function.

4.2 Optimization
To obtain the optimal embedding network 𝜙 (·;𝜽 ∗), we need to op-
timize 𝜽 and𝑊1 (K𝑥 ,K𝑦 ;𝜋, 𝜽 ) simultaneously. However, since the
joint optimization of 𝜽 and𝑊1 (K𝑥 ,K𝑦 ;𝜋, 𝜽 ) requires large com-
putational costs from the backpropagation and joint probability
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calculation, we employ alternative optimization methods designed
for efficient optimization of multiple primal variables [8, 11] in
order to optimize the model parameters of the embedding network
in ANE. Based on the alternative optimization technique, we op-
timize 𝜽 and𝑊1 (K𝑥 ,K𝑦 ;𝜋, 𝜽 ) alternatively as:𝑊1 (K𝑥 ,K𝑦 ;𝜋, 𝜽 )
is minimized over the fixed 𝜽 , and then 𝜽 is optimized for a fixed
𝑊1 (K𝑥 ,K𝑦 ;𝜋, 𝜽 ). In the training of ANE, we first estimate the opti-
mal joint probability 𝜋∗ for an optimal embedding network 𝜙 (·;𝜽 ∗)
in which case 𝑟 = 𝑣 for all data pairs. Then, we optimize 𝜽 for the
estimated optimal joint probability 𝜋∗.

To estimate the optimal joint probability, we introduce Lagrangian
of the Wasserstein distance in Eq. (4). For a given dataset D =

{(x1, y1), ..., (x𝑁 , y𝑁 )} containing independent and identically dis-
tributed (i.i.d.) 𝑁 samples, we define the embedding distance 𝑟𝑖 𝑗 =
𝑑 (𝜙 (x𝑖 ;𝜽 ), 𝜙 (x𝑗 ;𝜽 )) and target distance 𝑢𝑖 𝑗 = 𝑑 (y𝑖 , y𝑗 ) for a pair
of data ((x𝑖 , y𝑖 ), (x𝑗 , y𝑗 )). Lagrangian of𝑊1 (K𝑥 ,K𝑦 ;𝜽 ) on D is:

𝐿𝑊 =
∑

(𝑖, 𝑗) ∈N

∑
(𝑘,𝑞) ∈N

∥𝑟𝑖 𝑗 − 𝑢𝑘𝑞 ∥2𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞)

+
∑

(𝑖, 𝑗) ∈N

©­«𝑝 (𝑟𝑖 𝑗 ) −
∑

(𝑘,𝑞) ∈N
𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞)

ª®¬ 𝑓 (𝑟𝑖 𝑗 )
+

∑
(𝑖, 𝑗) ∈N

©­«𝑝 (𝑢𝑖 𝑗 ) −
∑

(𝑘,𝑞) ∈N
𝜋 (𝑟𝑘𝑞, 𝑢𝑖 𝑗 )

ª®¬𝑔(𝑢𝑖 𝑗 ), (5)

where N = {(𝑖, 𝑗) | for all 𝑖, 𝑗 ∈ {1, 2, ..., 𝑁 }} is a set of all pos-
sible index pairs in D. To prevent the divergence of 𝐿𝑊 to −∞,
a constraint 𝑓 (𝑟𝑖 𝑗 ) + 𝑔(𝑢𝑘𝑞) ≤ ∥𝑟𝑖 𝑗 − 𝑢𝑘𝑞 ∥2 for all 𝑟𝑖 𝑗 and 𝑢𝑘𝑞 is
introduced for the Lagrangian multipliers 𝑓 and 𝑔. This constraint
is referred to as well-known 1-Lipschitz constraint in the dual form
of Wasserstein distance [3].

4.2.1 Decomposition of Lagrangian. We define I𝑖 𝑗 = {(𝑘, 𝑞) | 𝑢𝑖 𝑗 =
𝑢𝑘𝑞 for(𝑘, 𝑞) ∈ N}, which is a set of index pairs with the same
target distances. To estimate the optimal joint probability, we de-
compose 𝐿𝑊 based on the index pairs in I𝑖 𝑗 andN \ I𝑖 𝑗 as follows.
Note that a detailed derivation for the decomposition of the La-
grangian is provided in Appendix 2.

𝐿𝑊 =
∑

(𝑖, 𝑗) ∈N

∑
(𝑘,𝑞) ∈N\I𝑖 𝑗

(
∥𝑟𝑖 𝑗 − 𝑢𝑘𝑞 ∥2 − 𝑓 (𝑟𝑖 𝑗 ) − 𝑔(𝑢𝑘𝑞)

)
𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞)

+
∑

(𝑖, 𝑗) ∈N

∑
(𝑘,𝑞) ∈I𝑖 𝑗

∥𝑟𝑖 𝑗 − 𝑢𝑘𝑞 ∥2𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞)

+
∑

(𝑖, 𝑗) ∈N

©­«𝑝 (𝑟𝑖 𝑗 ) −
∑

(𝑘,𝑞) ∈I𝑖 𝑗
𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞)

ª®¬ 𝑓 (𝑟𝑖 𝑗 )
+

∑
(𝑖, 𝑗) ∈N

©­«𝑝 (𝑢𝑖 𝑗 ) −
∑

(𝑘,𝑞) ∈N
𝜋 (𝑟𝑘𝑞, 𝑢𝑖 𝑗 )

ª®¬𝑔(𝑢𝑖 𝑗 )
+

∑
(𝑘,𝑞) ∈N

∑
(𝑖, 𝑗) ∈N\I𝑘𝑞

𝜋 (𝑟𝑘𝑞, 𝑢𝑖 𝑗 )𝑔(𝑢𝑖 𝑗 ) . (6)

4.2.2 Estimation of Optimal Joint Probability. For an optimal em-
bedding function 𝜙 (·;𝜽 ∗) where 𝑟𝑖 𝑗 = 𝑢𝑖 𝑗 for all (𝑖, 𝑗) ∈ N , one
possible joint probability that globally minimizes𝑊1 (K𝑥 ,K𝑦 ;𝜽 ) is
given as follows.

• For the first term, the best choice of the joint probability is
to set 𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞) = 0 for all (𝑖, 𝑗) ∈ N and (𝑘, 𝑞) ∈ N \ I𝑖 𝑗
because ∥𝑟𝑖 𝑗 − 𝑢𝑘𝑞 ∥2 − 𝑓 (𝑟𝑖 𝑗) − 𝑔(𝑢𝑘𝑞) ≥ 0 for all 𝑟𝑖 𝑗 and
𝑢𝑘𝑞 from the constraint in Lagrangian multipliers.

• For the second term, although 𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞) is not explicitly
determined for (𝑖, 𝑗) ∈ N and (𝑘, 𝑞) ∈ I𝑖 𝑗 , it always zero by
𝑟𝑖 𝑗 = 𝑢𝑘𝑞 under 𝜙 (·;𝜽 ∗).

• The values of the remaining terms are always zero by 𝑝 (𝑟𝑖 𝑗 ) =∑
(𝑘,𝑞) ∈I𝑖 𝑗 𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞), 𝑝 (𝑢𝑖 𝑗 ) =

∑
(𝑘,𝑞) ∈I𝑖 𝑗 𝜋 (𝑟𝑘𝑞, 𝑢𝑖 𝑗 ), and

𝜋 (𝑟𝑘𝑞, 𝑢𝑖 𝑗 ) = 0 for all (𝑘, 𝑞) ∈ N and (𝑖, 𝑗) ∈ N \ I𝑘𝑞 .
Therefore, one possible optimal joint probability 𝜋∗ to minimize
𝑊1 (K𝑥 ,K𝑦 ;𝜽 ) is given as 𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞) = 0 for all (𝑖, 𝑗) ∈ N and
(𝑘, 𝑞) ∈ N \ I𝑖 𝑗 but

∑
(𝑖, 𝑗) ∈N

∑
(𝑘,𝑞) ∈I𝑖 𝑗 𝜋 (𝑟𝑖 𝑗 , 𝑢𝑘𝑞) = 1. As pre-

sented above, 𝜋∗ leads𝑊1 (K𝑥 ,K𝑦 ;𝜽 ) to zero, which is the global
minimum of Wasserstein distance. In the training of the embedding
network in ANE, we will optimize the model parameters 𝜽 under
the optimal joint probability 𝜋∗.

4.2.3 Model Parameter Optimization. In the decomposed Lagrangian
in Eq. (6), we showed that our optimal joint probability 𝜋∗ (𝑟𝑖 𝑗 , 𝑢𝑘𝑞)
globally minimizes𝑊1 (K𝑥 ,K𝑦 ;𝜽 ) under the optimal embedding
network𝜙 (·;𝜽 ∗)where 𝑟𝑖 𝑗 = 𝑢𝑖 𝑗 for all (𝑖, 𝑗) ∈ N . From the i.i.d con-
dition onD, 𝜋 (𝑟𝑖 𝑗 , 𝑢𝑖 𝑗 ) = 𝜋 (𝑟𝑘𝑞, 𝑢𝑘𝑞) for all {(𝑖, 𝑗), (𝑘, 𝑞)} ∈ N×N .
Thus, the embedding problem of ANE can be reduced as:

𝜽 ∗ = argmin
𝜽

𝑁∑
𝑖=1

𝑁∑
𝑗=1

|I𝑖 𝑗 | ∥𝑟𝑖 𝑗 −𝑢𝑖 𝑗 ∥2𝜋∗
𝑖 𝑗 , (7)

where the simplified notation 𝜋𝑖 𝑗 = 𝜋 (𝑟𝑖 𝑗 , 𝑢𝑖 𝑗 ) indicates the joint
probability of the same index pairs.

In the objective function of Eq. (7), the joint probability 𝜋𝑖 𝑗 can
be empirically estimated by the i.i.d. condition as:

𝜋∗ (𝑟𝑖 𝑗 ,𝑢𝑘𝑞) =
1∑𝑁

𝑙=1
∑𝑁
𝑚=1 |I𝑙𝑚 |

. (8)

From the empirical joint probability, the coefficient |I𝑖 𝑗 |𝜋∗𝑖 𝑗 are
reduced to constant by |I𝑖 𝑗 | ≪

∑𝑁
𝑙=1

∑𝑁
𝑚=1 |I𝑙𝑚 | for all (𝑖, 𝑗) ∈ N

in the regression setting. Finally, the embedding problem of ANE
under the optimal joint probability is given by:

𝜽 ∗ = argmin
𝜽

𝑁∑
𝑖=1

𝑁∑
𝑗=1

∥𝑟𝑖 𝑗 −𝑢𝑖 𝑗 ∥2 . (9)

The goal of ANE is to build an embedding network𝜙 (·;𝜽 ) by solving
the optimization problem in Eq. (9) to improve the distance con-
sistency of the given dataset D for supporting machine learning
extrapolation over D.

4.2.4 Sampling Strategies in Optimization. The objective function
in Eq. (9) requires𝑂 (𝑁 2) time complexity overD for each epoch in
the training. To remove the quadratic time complexity of ANE, we
can employ the random sampling in practical implementation of
ANE. In Section 5.3.2, we will evaluate the embedding performances
of ANE for three different sampling methods to validate that the
efficient random sampling is sufficient for ANE.

Algorithm 1 describes the overall training process of ANE. After
the training of the embedding network 𝜙 (·;𝜽 ) with Algorithm 1,
a prediction model 𝑓 (𝜙 (·;𝜽 ∗); 𝝁) is trained to predict the target
values y for the input embeddings from the trained embedding
network, where 𝝁 is model parameters of the prediction model.
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Algorithm 1: Training of ANE-based prediction model
Input :Training dataset D = {(x1, y1), ..., (x𝑁 , y𝑁 )};

Embedding network 𝜙 (x;𝜽 ); Prediction model
𝑓 (𝜙 (x;𝜽 ); 𝝁); Sampling method𝜓 (x;D); Distance
metric 𝑑

1 repeat
2 for 𝑖 = 1; 𝑖 < 𝑁 ; 𝑖 + + do
3 𝑠 = 𝜓 (x𝑖 ;D) // List of indices of the samples.
4 for 𝑗 = 1; 𝑗 < |𝑠 |; 𝑗 + + do
5 𝑟𝑖 𝑗 = 𝑑 (𝜙 (x𝑖 ;𝜽 ), 𝜙 (x𝑠 𝑗 ;𝜽 )) and 𝑢𝑖 𝑗 = 𝑑 (y𝑖 , y𝑠 𝑗 )
6 𝐿𝑊 + = | |𝑟𝑖 𝑗 − 𝑢𝑖 𝑗 | |2
7 end
8 end
9 Optimize 𝜽 with respect to 𝐿𝑊 .

10 until 𝜽 converged;
11 Optimize 𝝁 onZ = {(𝜙 (x1;𝜽 ∗), y1), ..., (𝜙 (x𝑁 ;𝜽 ∗), y𝑁 )}.
12 Return 𝜙 (x;𝜽 ∗) and 𝑓 (𝜙 (x;𝜽 ∗); 𝝁∗)

4.3 Time Complexity
The time complexity of ANE basically follows the time complexity
of DML. As shown in Algorithm 1, the time complexity of the
training of ANE is given by 𝑂 (𝐼𝑁 |𝑠 |𝜅), where 𝐼 is the number of
epochs, 𝑁 is the number of data instances in D, |𝑠 | is the number
of samples for each data instance, and 𝜅 is the time complexities of
forward and backward steps of the embedding networks. However,
we can claim that ANE is sufficiently efficient because widely used
DML methods have quadratic or cubic time complexities for the
number of data [7, 34, 36]. Besides, the time complexity 𝑂 (𝐼𝑁 |𝑠 |𝜅)
of ANE is comparable to the time complexity𝑂 (𝐼𝑁𝐵𝜅) of LRL [18]
and SLRL [27] because |𝑠 | is usually less than the batch size 𝐵.

5 EXPERIMENT
To evaluate ANE-based models in a comprehensive manner, we
measured their extrapolation errors on regression problems in vari-
ous domains with various data formats: 1) Matrix data for N-body
problem Sec. 5.1, 2) Graph-structured data for materials property
prediction Sec. 5.2, 3) Time-series data for geomagnetic storm fore-
casting Sec. 5.3. All neural networks were trained by Adam op-
timizer [19], and the training hyperparameters were determined
by a grid search. The initial learning rate and the batch size were
selected in {1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 5e-2} and {16, 24, 32, 48, 64},
respectively. The 𝐿2 regularization coefficient is also determined
by the grid search in {1e-7, 5e-7, 1e-6, 5e-6, 1e-5}. The selected
hyperparameters for each method are provided in Appendix 3.

For the DML methods, we selected appropriate embedding net-
work 𝜙 (·;𝜽 ) for each data format. However, we used FCNNs as the
prediction models 𝑓 (·; 𝝁) of the DML methods for all experiments
because the input data is always converted into the vector-shaped
embeddings by the embedding networks. We repeated all the ex-
periments five times and reported the averages of the extrapolation
performances with standard deviations. The extrapolation perfor-
mances were measured with appropriate metrics for each scientific
application, such as correlation distance (Corr), R2 score (R2), and
mean absolute error (MAE).

Table 1: Extrapolation errors for simulated 𝑛-body problem
datasets. Idx. denotes the dataset index. The prediction er-
ror is measured by distance correlation (Corr) between the
simulated and predicted velocities of the particles

Idx. NBNet GIN MPNN UMP LRL-F SLRL-F ANE-F
1 0.32 0.54 0.35 0.25 0.43 0.53 0.18
2 0.49 0.54 0.53 0.36 0.52 0.49 0.45
3 0.57 0.54 0.53 0.46 0.52 0.59 0.29
4 0.25 0.68 0.26 0.26 0.09 0.07 0.03
5 0.66 0.93 0.71 0.69 0.85 0.65 0.49
6 0.11 0.22 0.17 0.16 0.12 0.12 0.02
7 0.75 0.94 0.63 0.67 0.61 0.44 0.40
8 0.44 0.85 0.26 0.29 0.27 0.38 0.15
9 0.39 0.26 0.10 0.70 0.18 0.40 0.03
10 0.64 0.72 0.55 0.54 0.53 0.37 0.27

mean 0.46 0.62 0.41 0.44 0.41 0.40 0.23
±std. ±0.19 ±0.24 ±0.20 ±0.19 ±0.23 ±0.18 ±0.17

5.1 Extrapolation on Matrix-Shaped Data:
𝑛-Body Problem

The purpose of the 𝑛-body problem [31] is to estimate future trajec-
tories or velocities of 𝑛 particles in a physical system. Each particle
has mass, initial position, and initial velocities. The 𝑛-body is com-
mon and essential in many scientific applications in physics [31]
and astronomy [30]. We predict the velocities of the 𝑛 particles at
time 𝑡 + 1 for given positions and velocities of the particles at time
𝑡 , Hence, the input data at time 𝑡 is a matrix X𝑡 ∈ R𝑛×(2𝑑+1) con-
taining the positions and the velocities in 𝑑-dimensional space, and
the mass of the particle. The target data is also a matrix y𝑡 ∈ R𝑛×𝑑
containing the velocities of the particles at time 𝑡 + 1. In this exper-
iment, we measured the extrapolation errors of ANE in a common
3-dimensional 3-body problem. Thus, the input and target data are
the matrices x𝑡 ∈ R3×7 and y𝑡 ∈ R3×3, respectively.

We followed the computational𝑛-body simulation of the state-of-
the-art method in machine learning extrapolation [46] to generate
the 𝑛-body problem datasets. In the simulation, the gravitational
constant and the time step were fixed to 1 and 0.01, respectively.
Total 10 datasets were generated with randomly initialized posi-
tions and velocities of the particles.To evaluate the extrapolation
accuracies, we trained prediction models for the observations at the
time [0, 80] and predicted the velocities using the trained models
in the future time (80, 100]. In the experiment, we implemented
ANE-F by employing FCNNs as the embedding networks 𝜙 (·;𝜽 )
and the prediction model 𝑓 (𝜙 (·;𝜽 ∗); 𝝁) of ANE. To evaluate the
extrapolation capabilities of ANE-F, we compared with various
machine learning methods from three approaches as follows.

• Direct prediction method: As a baseline method, the ex-
trapolation errors of NBNet [31] were compared in the ex-
periment. NBNet is a FCNN-based network to predict the
velocities of the particles from their current positions and
velocities.

• Graph neural networks (GNNs): GNNs have achieved
state-of-the-art extrapolation performances in the 𝑛-body
problem by representing the particles and their interactions
as the nodes and the edges in the mathematical graphs, re-
spectively [46]. We compared the extrapolation errors of
four GNNs: graph convolutional network (GCN) [20], graph
isomorphism network (GIN) [45], message passing neural
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Simulated velocity (ground truth) Predicted velocity

(a) Prediction results of MPNN (b) Prediction results of ANE-F

Figure 4: Prediction results of the 𝑛-body problem where the velocities of the particles were most dynamically changed. In
this case, the best and the second-best models were ANE-F and MPNN. (a): Prediction results of MPNN for each coordinate of
the particle. (b): Prediction results of ANE-F. In the figures, the velocity of the 𝑖𝑡ℎ particle is denoted by 𝑣𝑖,𝑟 where 𝑟 indicates
x, y, and z coordinates. X and Y axes indicate future time and velocity, respectively.

network (MPNN) [10], and transformer-based graph neural
network (UMP) [35].

• Metric learning methods: Although DML is hardly ap-
plied to machine learning extrapolation, LRL [18] and SLRL
[27], both of which are metric learning methods on continu-
ous target values, can be used to simplify the input-to-target
relationships. We generated two prediction models, LRL-F
and SLRL-F, by employing FCNNs as the embedding net-
works and the prediction models.

The extrapolation errors were calculated by distance correla-
tion (Corr) [37] between the simulated and predicted velocities to
measure how accurately the machine learning methods predicted
future trends of the velocities. Note that we did not use MAE in this
experiment because a few outliers in the prediction dominates the
entire prediction errors in MAE. Table 1 shows the extrapolation
errors of the machine learning methods for each 𝑛-body dataset.
By comparing NBNet and GNNs, we observe that the extrapolation
errors were generally reduced by employing graph-based repre-
sentation rather than the primitive matrix representation of the
𝑛-body problem. Similarly, the metric learning methods were as
effective as GNNs in the extrapolation of the 𝑛-body problem be-
cause they automatically simplify the input-to-target relationships
for a given dataset. In particular, the arithmetic mean of Corr in
ANE-F was the smallest among the errors of all the competitors
including GNNs and metric learning methods, i.e., ANE generated
the input representations that were the most effective to reduce the
extrapolation errors in the 𝑛-body problem.

Fig. 4 shows the predicted velocities of the particles for each
axis. We presented the predicted velocities for the 𝑛-body dataset
of index 8 in which the trajectories of the particles changed most
dynamically in the future time (80, 100]. In this case, the best method
was ANE-F, and the extrapolation error measured by Corr was 0.15.
The second best method was MPNN, and its Corr was 0.26. One

Table 2: Extrapolation accuracies for each target property
on MPS datasets. N/A means a negative R2 score indicating
a failure of extrapolation.

Method Formation Band Shear Bulk
Energy Gap Modulus Modulus

GCN 0.662 0.254 0.526 0.574
(±0.019) (±0.071) (±0.025) (±0.037)

MPNN 0.072 N/A 0.352 0.714
(±0.052) (±0.344) (±0.007)

CGCNN N/A 0.163 0.405 0.732
(±0.424) (±0.441) (±0.011)

UMP 0.763 0.351 0.552 0.707
(±0.042) (±0.069) (±0.003) (±0.022)

LRL-MPNN 0.819 0.259 0.704 0.769
(±0.024) (±0.034) (±0.009) (±0.021)

SLRL-MPNN 0.841 0.396 0.693 0.767
(±0.018) (±0.052) (±0.013) (±0.007)

ANE-MPNN 0.879 0.447 0.716 0.790
(±0.017) (±0.055) (±0.015) (±0.011)

of the most remarkable improvements by ANE-F is that sudden
explosions in the predicted target values were significantly removed
when compared to the extrapolation results of MPNN.

5.2 Extrapolation on Graph-Structured Data:
Materials Property Prediction

The physical properties of the materials essentially determine the
performances and efficiencies of various industrial applications,
such as semiconductors and electronic sensors. For this reason,
discovering novel materials of desired properties has a significant
impact in various engineering fields. The materials properties are
determined by the crystal structures that is a unique identifier of
the materials [14, 43]. Hence, an accurate extrapolation of unseen
crystal structures is crucial in discovering novel materials [24].

In this experiment, we evaluated the extrapolation accuracies of
ANE onMPS dataset [43] that contains 3,162 crystal structures from
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Table 3: Extrapolation errors and detection accuracies of ge-
omagnetic storms on the MNN-A dataset.

Method Extrapolation Error Detection Accuracy
MAE Corr Precision Recall F1-score

RNN 16.089 0.710 0.133 0.281 0.178
(±0.806) (±0.025) (±0.013) (±0.065) (±0.015)

LSTM 14.721 0.696 0.164 0.260 0.201
(±0.702) (±0.065) (±0.048) (±0.087) (±0.062)

GRU 14.613 0.687 0.145 0.230 0.177
(±0.368) (±0.027) (±0.027) (±0.055) (±0.034)

TF 13.106 0.670 0.185 0.145 0.159
(±0.717) (±0.031) (±0.115) (±0.074) (±0.084)

LRL-GRU 13.700 0.499 0.189 0.519 0.272
(±0.581) (±0.031) (±0.035) (±0.186) (±0.054)

SLRL-GRU 10.986 0.455 0.260 0.336 0.291
(±0.332) (±0.040) (±0.065) (±0.111) (±0.077)

ANE-GRU 10.534 0.428 0.513 0.495 0.502
(±0.407) (±0.041) (±0.044) (±0.071) (±0.042)

general applications. Implementation details to convert the crystal
structures into the attributed graphs are provided in Appendix 4.
To make a complete extrapolation problem, we trained machine
learning models on the crystal structures containing only two types
of elements (binary materials). Then, we predict the materials prop-
erties of the crystal structures containing three or four types of
elements (ternary and quaternary materials, respectively). That is,
we evaluated the machine learning models in an extrapolation prob-
lem of how the models well infer the complex structures (ternary
and quaternary materials) from relatively simple structures (binary
materials). In this experiment, we used MPNNs and FCNNs as the
embedding networks and prediction models of the DML methods,
respectively. Table 2 presents R2 scores of the machine learning
methods in the extrapolaiton to predict four materials properties.
For all target materials properties, ANE-MPNN achieved the highest
R2 score. From the theoretical analysis of machine learning extrap-
olation [46], the improvements by ANE in the extrapolation can be
justified by the fact that ANE generates more linear input-to-target
relationships. Its empirical demonstrations are in Appendix 6.

5.3 Extrapolation on Time-Series Data:
Geomagnetic Storm Forecasting

We predicted the magnetic field of Earth to evaluate the extrapola-
tion performances of ANE on time-series data. For the evaluation,
we used MagNet NASA (MNN) dataset [1] containing input multi-
variate time-series and target disturbance storm time (Dst) observa-
tion. The data was sampled for each observation for an hour from
the original dataset. To avoid including seasonal patterns that ap-
pear in the training dataset, we sampled only one year data to make
both training and test datasets. In this way, we can be ascertain that
the test datsets contain unseen time-series patterns, which makes
the prediction an extrapolation problem. According to the provided
categories in the original dataset, we generated three sub-datasets
MNN-A, -B, and -C each containing 8,762 data instances with 14
input features. 80% of data instances were used to train the predic-
tion models, and 20% of the data instances were used to evaluate
the extrapolation performances. That is, the data instances at the
time [1, 7009] were used for the training, and the data instances in
the future time [7010, 8762] were used for extrapolation.

(a) Forecasting results of GRU (b) Forecasting results of ANE-GRU
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Figure 5: Forecasting results on theMNN-A dataset. (a): Fore-
casting results of GRU. (b): Forecasting results of ANE-GRU.

We predicted Dst from the time-series data using naive recurrent
neural network (RNN) [12], long short-term memory (LSTM) [12],
gated recurrent unit network (GRU) [6], and transformer network
(TF) [39]. For the evaluation, we generated prediction models LRL-
GRU, SLRL-GRU, and ANE-GRU, by employing GRUs and FCNNs as
embedding networks and prediction models, respectively. Also, we
used FCNNs as the prediction models of LRL-GRU, SLRL-GRU, and
ANE-GRU. After the Dst prediction, we forecasted the geomagnetic
storms based on the predicted Dst values to evaluate the extrapo-
lation performances of ANE in real-world scientific applications.
The experiment settings and the evaluation results on the MNN-B
and MNN-C datasets are provided in Appendix 5.

5.3.1 Dst Prediction. The extrapolation errors were measured by
MAE and Corr between the ground truth and predicted sequences
of Dst. Table 3 shows the extrapolation errors on MNN-A dataset.
In the experiment, the predicted sequence of Dst from ANE-GRU
showed the smallest MAE and Corr for the ground truth. Fig. 5-(a)
and -(b) show the Dst values predicted by GRU and ANE-GRU,
respectively. In predicting future Dst, the predicted values of GRU
severely fluctuated and the predicted Dst values were not reliable.
On the other hand, the fluctuations in the predicted values were
significantly removed in ANE-GRU, and the predicted sequence
roughly followed the patterns of the ground truth.

5.3.2 Geomagnetic Storm Detection. From the predicted sequences
of Dst, we detected the geomagnetic storm with a threshold of Dst
in future time. The detection threshold was set to -50 based on
domain knowledge to detect moderate, intense, and super geomag-
netic storms. That is, geomagnetic storm detection can be regarded
as a challenging task of detecting outliers in the extrapolation prob-
lems. Table 3 shows precision, recall, and f1-score of the detection
results. In geomagnetic storm detection, ANE-GRU outperformed
all competitors, and the F1-score was greatly improved from the
previous maximum of 0.291 to 0.502. The detection threshold is also
presented in Fig. 5 as a green dotted line, and the false positives
were significantly removed in the prediction results of ANE-GRU.

5.4 ANE for Discovering Solar Cell Materials
Perovskite [17] has received significant attention as solar cell ma-
terials for renewable energy to overcome the global climate cri-
sis [5]. HOIP dataset [17] provides 1,345 crystal structures of the
perovskites with their band gaps, which roughly determine the
applications of the perovskite solar cells. One of the most challeng-
ing points in the real-world materials discovery is that we should



KDD ’22, August 14–18, 2022, Washington, DC, USA Gyoung S. Na and Chanyoung Park

Table 4: R2 scores of the GNN and DML methods in predict-
ing band gaps of the perovskite materials.

Method Dataset
HOIP-HIGH HOIP-LOW

GNN methods

GCN 0.213(±0.162) N/A
MPNN N/A N/A
CGCNN N/A N/A
UMP N/A N/A

DML methods
LRL-MPNN N/A 0.521(±0.131)
SLRL-MPNN 0.182(±0.160) 0.486(±0.096)
ANE-MPNN 0.558(±0.044) 0.664±(0.071)

(a) Prediction results of GCN (b) Prediction results of ANE-MPNN (c) Embeddings of test materials
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Figure 6: Prediction and embedding results in predicting
materials properties on HOIP-HIGH dataset. (a): Prediction
results of the best competitor GCN. (b): Prediction results
of ANE-MPNN. (c): Embedding results of ANE on the test
dataset. Each point is a crystal structure, and the colors in-
dicate the band gaps of the crystal structures.

infer the materials properties of the crystal structures containing
unseen elemental combinations. To make an extrapolation problem
like the real-world materials discovery, we generated two datasets
from HOIP dataset, called HOIP-LOW and HOIP-HIGH, each of
which is generated by eliminating crystal structures containing
certain elements. Specifically, HOIP-HIGH containing 1,248 and
97 training and test crystal structures is generated by eliminating
the crystal structures containing germanium (Ge) and fluorine (F).
Similarly, HOIP-LOW containing 1,228 and 117 training and test
crystal structures is generated by eliminating the crystal structures
containing lead (Pb) and iodine (I) from the original HOIP dataset.
Furthermore, the band gaps of the test crystal structures are in
completely different ranges compared with the band gaps of the
training crystal structures. Therefore, the experiment settings com-
pletely cover the real-world applications for discovering novel solar
cell materials.

In the experiments on the HOIP-HIGH and HOIP-LOW datasets,
ANE-MPNN outperformed all competitors as shown in Table 4.
In particular, the best competitor GCN was could not capture the
relationships between the crystal structures and their band gaps,
whereas ANE-MPNN roughly captured the relationships as shown
in Fig. 6-(a) and -(b). Also, ANE-MPNN generated an embedding
space where the test crystal structures are roughly arranged ac-
cording to their band gaps in Fig. 6-(c), which in turn improve the
extrapolation capabilities of machine learning methods [46].

With the improvements by ANE in extrapolation, we conducted
a high-throughput screening based on ANE as a real-world applica-
tion to discover novel solar cell materials of desired band gaps. To
quantitatively present the screening accuracy, we define a hit rate

(a) GCN + LRL-MPNN (b) ANE-MPNN
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Figure 7: High-throughput screening results to discover
novel solar cell materials. (a): Hit rates of the best competi-
tors GCN and LRL-MPNN. (b): Hit rates of ANE-MPNN.

H(𝑎, 𝑏) for a range [𝑎, 𝑏) as H(𝑎, 𝑏) = # of predicted data in [𝑎,𝑏)
# of ground truth data in [𝑎,𝑏) .

We compared the hit rates of ANE-MPNN with the hit rates of GCN
and LRL-MPNN that were the best competitors on HOIP-HIGH and
-LOW, respectively. As shown in Fig. 7, the hit rates were generally
improved by ANE and higher than 40% for most ranges. These
high-throughput screening results show the usefulness of ANE in
virtual discovery of novel solar cell materials.

5.5 Sampling Strategies and Extrapolation
To avoid the 𝑂 (𝑁 2) time complexity over the datasets in the train-
ing of ANE, an appropriate sampling strategy is necessary in ANE.
In this experiment, we evaluate the extrapolation accuracies of ANE
for three efficient sampling methods as follows.

• Random sampling: A data sample is randomly selected in
a mini-batch. The random sampling is a useful and efficient
method to sample the data based on density of the data
distribution.

• 𝑘-NN sampling: 𝑘 data samples are selected in a mini-batch
based on the target distance from the anchor data. The 𝑘-NN
sampling can be used to sample data for approximating the
local densities around the anchor data.

• Hardness sampling: 𝑘 data samples of largest | |𝑟𝑖 𝑗 −𝑢𝑖 𝑗 | |2
for an anchor data x𝑖 are sampled in a mini-batch, i.e., top
𝑘 data samples of the largest errors are selected for each
anchor data in a mini batch.

For the evaluation, we predicted the materials properties on the
MPS dataset using ANE-MPNN with the three different sampling
methods. Fig. 8 presents the extrapolation accuracies for each sam-
pling method, and the random sampling was the best sampling
strategy despite its simplicity. The superiority of the random sam-
pling can be explained by the objective function of ANE, whose
goal is to reduce Wasserstein distance of the embedding and target
distance distributions. Therefore, a sampling method to preserve
the data distribution is necessary for ANE, and the random sam-
pling that is a well-known density-based sampling [26] satisfies
this requirement of ANE for estimating the data distributions.

6 CONCLUSION
This paper proposed a novel and generally applicable nonlinearity
encoder (ANE) for improving machine learning extrapolation. ANE
minimizes the Wasserstein distance between the pairwise distances
of the data samples in the input and the target spaces to remove
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Figure 8: Extrapolation accuracies of ANE with three differ-
ent sampling methods on MPS dataset.

nonlinearity in the prediction problem by encoding it into the data
representation. ANE outperformed state-of-the-art deep neural
networks and deep metric learning methods in the experiments
on various scientific applications and data formats. ANE paved the
way for machine learning extrapolation to discover new scientific
knowledge.
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APPENDIX 1. CLASSIFICATION ON MP DATASET
MP dataset contains 45,941 crystal structures with their real-valued target properties called band gaps [43]. We made a classification problem
on MP dataset by quantizing the range of the band gaps in [0, 16.586] into 10 classes. For example, the first and second classes contain the
crystal structures of the band gaps in [0, 1.659) and [1.659, 3.317), respectively.

APPENDIX 2. DECOMPOSITION OF LAGRANGIAN
In Section 4.2.1, we introduced a decomposed Lagrangian 𝐿𝑊 in Eq. (6) to estimate optimal joint probability of the loss function of ANE. A
full derivation of the composed Lagrangian 𝐿𝑊 is given by:
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APPENDIX 3. IMPLEMENTATION DETAILS
Table 5 presents implementation details of ANE for each experiment. In the table, 𝜂 (0 and 𝐿2 mean the initial learning rate and the 𝐿2
regularization coefficient, respectively. Note that the length of the sequences was fixed to 8 in geomagnetic storm forecasting. PyTorch and
Torch Geometric libraries were used in the implementation. All experiments were performed in amachine of Intel i9-12900K CPU, 64Gmemory,
and GeForce RTX 3090. The source code of ANE and the experiment scripts of this paper are available at https://github.com/ngs00/ane.

Table 5: Implementation details of ANE for each experiment. 𝜂 (0) , 𝐿2, and𝑚 mean the initial learning rate, 𝐿2 regularization
coefficient, and dimensionality of embeddings, respectively.

Experiment Embedding Network 𝜙 (·;𝜽 ) Prediction Model 𝑓 (·; 𝝁)
Method 𝜂 (0) 𝐿2 Batch size 𝑚 Method 𝜂 (0 𝐿2 Batch size

N-body problem (Section 5.1) FCNN 5e-4 5e-6 32 32 FCNN 5e-4 5e-6 32

Materials property prediction (Section 5.2)

MPS-FE MPNN 5e-4 0 32 32 FCNN 5e-4 1e-6 64
MPS-BG MPNN 1e-3 0 32 32 FCNN 5e-4 1e-6 64
MPS-SM MPNN 5e-4 0 32 48 FCNN 5e-4 1e-6 64
MPS-BM MPNN 5e-4 1e-7 32 48 FCNN 5e-4 1e-6 64

Geomagnetic storm forecasting (Section 5.3)
MNN-A GRU 5e-4 1e-6 32 24 FCNN 1e-3 1e-6 32
MNN-B GRU 5e-4 0 32 24 FCNN 1e-3 1e-6 32
MNN-C GRU 5e-4 0 32 64 FCNN 1e-3 1e-6 32

APPENDIX 4. CRYSTAL GRAPH GENERATION
To feed the crystal structures into GNNs, the crystal structures should be converted into the attributed graph 𝐺 = (V, E,X,E), where V is
a set of nodes (atoms), E is a set of edges (chemical bondings), X ∈ R |V |×𝑑 is a 𝑑-dimensional node-feature matrix, and E ∈ R |E |×𝑙 is a

https://github.com/ngs00/ane
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𝑙-dimensional edge-feature matrix. We used well-known Pymatgen3 package to extract a unit cell of the lattice crystal structures of the
materials. For the node features, we used 8 pre-defined chemical and physical properties of the elements. For the edge features, we used the
physical distance between two atoms, which is quantized by radial basis function [43]. The atomic cutoff to define neighborhood atom was
fixed to 5 Å and 4 Å on MPS and HOIP datasets, respectively.

APPENDIX 5. EXTRAPOLATION ERRORS AND DETECTION ACCURACIES ON MNN DATASETS
Tables 6 and 7 shows the extrapolation errors and the dectection accuracies of the machine learning methods on MNN-B and MNN-C datasets.
Like the results on MNN-A dataset, ANE-GRU achieved the best performance for all metrics on MNN-B dataset. Although ANE-GRU was
the third best method in Corr on MNN-C datasets, it achieved the best performances for all other metrics.

Table 6: Extrapolation errors and detection accuracies on MNN-B dataset.

Metric RNN Methods DML Methods
RNN LSTM GRU TF LRL-GRU SLRL-GRU ANE-GRU

Extrapolation MAE 13.291±0.408 11.894±0.384 12.118±0.537 11.444±0.244 9.800±0.492 9.306±0.459 8.993±0.393
Error Corr 0.718±0.072 0.672±0.046 0.677±0.049 0.657±0.058 0.442±0.075 0.410±0.039 0.381±0.055

Detection Precision 0.253±0.070 0.341±0.065 0.280±0.080 0.364±0.072 0.728±0.188 0.648±0.121 0.741±0.088
Accuracy Recall 0.310±0.120 0.276±0.126 0.248±0.091 0.319±0.103 0.448±0.243 0.519±0.084 0.581±0.123

F1-score 0.276±0.093 0.296±0.094 0.261±0.087 0.537±0.122 0.471±0.195 0.570±0.084 0.638±0.070

Table 7: Extrapolation errors and detection accuracies on MNN-C dataset.

Metric RNN Methods DML Methods
RNN LSTM GRU TF LRL-GRU SLRL-GRU ANE-GRU

Extrapolation MAE 15.464±0.782 14.586±0.742 14.486±0.890 11.907±0.762 11.967±0.713 11.280±0.727 10.925±0.504
Error Corr 0.721±0.032 0.698±0.044 0.694±0.041 0.564±0.041 0.440±0.018 0.418±0.029 0.466±0.054

Detection Precision 0.036±0.026 0.048±0.042 0.032±0.033 0.037±0.039 0.132±0.059 0.336±0.191 0.891±0.095
Accuracy Recall 0.076±0.049 0.086±0.070 0.057±0.056 0.048±0.052 0.295±0.171 0.238±0.074 0.299±0.106

F1-score N/A N/A N/A N/A 0.172±0.087 0.263±0.106 0.347±0.142

APPENDIX 6. LINEARITY VALIDATION
The goal of ANE is to simplify the input-to-target relationships for machine learning extrapolation. In this experiment, we quantitatively
evaluate how well the DML methods simplified the input-to-target relationships on the materials datasets by measuring MAE and R2 score of
a simple linear regression because low MAE and high R2 score of the linear regression imply the simplest linearly-approximatable function.
We measured the linearity on the entire dataset to evaluate how well each DML method simplifies the relationships between the crystal
structures and their materials properties over the entire materials space. In the linearity evaluation, ANE achieved highest 𝑅2 scores for all
datasets, and its 𝑅2 scores were greater than 0.9 for most datasets as shown in Table 8. The highest linearity of ANE reveals the reasons for
the highest extrapolation accuracies in predicting materials properties of Sections 5.2 and 5.4.

Table 8: Linearitymeasured byMAE andR2 score of linear regression in predicting thematerials properties from the generated
materials embeddings on the benchmark materials datasets.

Method
MPS MPS MPS MPS HOIP-HIGH HOIP-LOW(Formation Energy) (Band Gap) (Shear Modulus) (Bulk Modulus)

MAE R2 score MAE R2 score MAE R2 score MAE R2 score MAE R2 score MAE R2 score

LRL-MPNN 0.165 0.914 0.571 0.425 0.208 0.834 0.155 0.879 0.112 0.967 0.101 0.975
(±0.015) (±0.018) (±0.031) (±0.032) (±0.003) (±0.003) (±0.006) (±0.008) (±0.011) (±0.005) (±0.009) (±0.003)

SLRL-MPNN 0.160 0.916 0.372 0.693 0.190 0.869 0.143 0.884 0.106 0.971 0.104 0.976
(±0.004) (±0.005) (±0.003) (±0.008) (±0.003) (±0.003) (±0.003) (±0.003) (±0.007) (±0.003) (±0.008) (±0.003)

ANE-MPNN 0.152 0.938 0.336 0.753 0.185 0.877 0.135 0.909 0.078 0.984 0.095 0.981
(±0.003) (±0.001) (±0.009) (±0.006) (±0.008) (±0.005) (±0.004) (±0.004) (±0.007) (±0.002) (±0.007) (±0.003)

3https://pymatgen.org
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