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Introduction

- Preliminaries: Frequently used Notations

G | = (V& X); given graph-structured data

1% a set of nodes

£ C V x V; asetof edges

X | ad-dimensional node feature matrix, or a set of node features {x, : v € V}
C a set of total node classes; C = C, U C;

Cp | base classes, a set of node classes that can be utilized during training

Cr | target classes, a set of node classes that have to be recognized in downstream FSNC tasks

T | = (57,Q7); a N-way K-shot Q-query (training or testing) episode (task)

S7 | asupport set, a set of given a few-labeled samples in T

Q7 | a query set, a set of unlabeled samples have to be predicted in 7

N | a number of way; i.e., number of distinct classes have to be classify within 7T
K a number of labeled samples (support set) given for each class (i.e., way) in 7

Q | a number of queries given for each class in 7

fo a model have to be trained (i.e., GNN encoder)

0 a model parameter

Graph-structured Data G Frequently used, important Notations



Introduction

- Preliminaries: Few-shot Learning

e Few-shot Learning (FSL)

- Challenge: Deep Neural Networks (DNNs) show poor generalizability for unseen classes with only a few-labeled samples

2 shot

- Objective: Like humans, machines should be able to learn from a few-labeled samples to recognize unseen classes

- Dominant paradigm: applying meta-learning methods like MAML [1] and ProtoNet [2] utilizing an episodic learning framework

Support Set

B / Armadillo i Pangolin \

2 way

Armadillo or Pangolin?

Sample Image: 2-way 2-shot FSL Problem

— meta-learning
9 ---- learning/adaptation

VL

4
* 7 \

ter 0

Description of MAML [1] Description of ProtoNet [2]

Image: Provided by Sungwon Kim (https://sung-won-kim.github.io)

[1] Finn, C,, Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning PMLR, 2017.

[2] Snell, J., Swersky, K., and Zemel, R. Prototypical networks for few-shot learning. Advances in Neural Information Processing Systems, 30, 2017.
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= (V,&,X); given graph-structured data

a set of nodes

4
v
I d - & C V xV; aset of edges
n t r 0 u Ct I 0 n X a d-dimensional node feature matrix, or a set of node features {x, : v € V}
C

a set of total node classes; C = C, UGy

_ Pl’e|lm|ﬂar|eS FeW_ShOt Learﬂlﬂg Downstream TaSk Settlngs Cp | base classes, a set of node classes that can be utilized during training

Cy target classes, a set of node classes that have to be recognized in downstream FSNC tasks

T | =(S7,Q7); a N-way K-shot Q-query (training or testing) episode (task)

ST | asupport set, a set of given a few-labeled samples in T
a query set, a set of unlabeled samples have to be predicted in 7
a number of way; i.e., number of distinct classes have to be classify within 7

Qr
N
[ ] Formal DOWnStream taS|< Settlng In DreVIOUS Studles I; a number of labeled samples (support set) given for each class (i.e., way) in T
fo
0

a number of queries given for each class in 7

a model have to be trained (i.e., GNN encoder)

Following Vinyals et al. [1], N-way K-shot Few-shot Learning task is common

a model parameter

N: number of distinct target classes within the downstream task Frequently used, important Notations

K: number of given a few-labeled samples in each ‘support set’

Q: number of queries have to be classified

Support Set S Query Set Qr

\ |

7Y YaYa)
- — (@@ OO
v — Q000
- — (@@00,

Example: 3-way, 2-shot, 2-query FSL task

[1] Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K. and Wierstra, D. Matching networks for one shot learning. Advances in neural information processing systems, 29, 2016.



Introduction

- Preliminaries: Episodic Learning Framework

» Description

support set and Q7 = {17 v

Support Set S;;  Query Set Qr

Downstream FSNC Task T
(e.g. 3-way 2-shot 2-query)

[1] Vinyals, O.,

Instead of using mini-batches, episodic learning trains model by using bundle of tasks {7;}{_,, where s; = {(x**
7)) ¢ for the stochastic optimization

Mimicking
Format

NXK
o over )}, are

By mimicking the “format” of the downstream task, model f, is trained to be aware of the task to solve in the testing phase

Most of meta-learning methods follow Episodic Learning Framework [1] for the model training

(1) Training

________ /
(3) Solve Downstream FSNC Task T
Training Episodes {7;};_4
(2) Fine-tuning
T Episode
Generation ( =T ==
QOO0 !
000!
Su;pc;t s_etET

Episodic Learning Framework Overview
in Few-Shot Node Classification

O
Graph-structured Data G

Blundell, C,, Lillicrap, T., Kavukcuoglu, K. and Wierstra, D. Matching networks for one shot learning. Advances in neural information processing systems, 29, 2016.



Introduction

- Preliminaries: Ordinary Node Classification on Graph-structured Data

e Ordinary Node Classification
- Objective: classifying unlabeled nodes to the one of known classes

- In this setting, entire classes in the graph are already known

I{ ' ' ' : labeled nodes \I

1 O O O : unlabeled nodes |

——————————— ’
Step 2: Make Prediction

[ Node A: O- ..... .,‘\

» : Node B: O- _____ _,’ :

I NodeC: O- ..... _,' 1

| /

Step 1: Model Training

( =T ==\

| or | O O O 1

Graph-structured Data G 900, 1000,
i Supervised ¥ Unsupervised

Three-class Example of the Process of the Ordinary Node Classification



Introduction

- Preliminaries: Few-shot Learning in Graph-structured Data

« Few-Shot Node Classification (FSNC)

- Objective: classifying queries to the one of unseen classes (target classes ;) with a few-labeled nodes (support set)
in the downstream FSNC task

- Only some of classes (base classes ¢,,) are known during training phase in the supervised setting

- Current Solution: 1) Meta-learning based methods or 2) utilizing Graph Contrastive Learning (GCL) + Linear probing

\
: labeled nodes of “base classes C,” I

@O0
Il O O O : labeled nodes of “target classes C,” |

Step 3: Solve FSNC Task
(Make Prediction on Queries)

—— o —

{ Query A: O— ————— -bo :
‘ : Query B: O— ————— -bo 1
I QueryC: O— ————— "O I
N o e e e o o = — 7/
Model Training Step 2:
| Model Fine-tuning
500
L i 000!
Graph-structured Data G X ._ _._._" ! Q 9_(2 , LQ 9_(2 )
If Supervised If Unsupervised Support set

3-way 2-shot Example of the Overall Process of the Few-Shot Node Classification



Introduction

- Challenges in FSNC: Why Supervised Graph Meta-learning methods are Insufficient?

e Label-scarcity Problem

- Supervised Graph Meta-learning require enough labeled samples from diverse base classes for training > Expensive

- Otherwise, their FSNC performances are significantly deteriorated (Kim et al. [1], Wang et al. [2])

- Moreover, the Label-scarcity problem hinders the full utilization of the information of all nodes in a graph

Amazon-Electronics

75
Class% / Label%
- 100%/100% [~ Unlabeled Nodes )
W 80%/80% D v o e o |
704 50%/50% * ool
20%/20% \. . i
e Unused .
Related with VLo T }
65 R W) / Supervised :
1 C—t Episode |
3 X Generation :
P A I
6 O i / B 7
it A Training Episodes {T;};—4
: : : : Graph-structured Data G with Labels Y,
TENT G-Meta ProtoNet MAML
Impact of the Label-scarcity Problem on Supervised = Cannot fully utilize all nodes in a graph

Supervised Graph Meta-learning Methods

[1] Kim, S., Lee, J., Lee, N., Kim, W., Choi, S., and Park, C. Task-equivariant graph few-shot learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2023.
[2] Wang, S., Dong, Y., Ding, K., Chen, C. and Li, J. Few-shot node classification with extremely weak supervision. In Proceedings of the 16th International Conference on Web Search and Data Mining 2023.
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Introduction

- Challenges in FSNC: Why Supervised Graph Meta-learning methods are Insufficient?

« Vulnerability to the Label Noise

Noisy labels in base classes also hurts FSNC performance of existing graph meta-learning methods

It is not always guaranteed that given labels are all clean

. Amazon-Electronics

Accuracy (%)
w ()]
(9] L{1

N
irk

MAML —@— TENT
—®— ProtoNet G-Meta v
35 T T T T T v
0.0 0.1 0.2 0.3 0.4 0.5

Label noise ratio p
Impact of the Label Noise on Supervised Graph Meta-learning Methods



Introduction
- Challenges in FSNC: Why GCL methods are Insufficient?

e Solving FSNC problem with GCL methods

- Recently, TLP [1] showed that a simple linear probing on node embeddings produced by GCL methods is better
than existing supervised graph meta-learning methods

- This is because GCL methods involve all nodes in a graph for training, thus TLP can utilize their effective and generic
node embeddings for solving FSNC

(a) Self-Supervised Graph Contrastive Training
Transformation T(:)

T
9
3
S
CT
C]
[
fOoR
[ Graph contrastive loss

Few labeled nodes E@ @ @’E

: \ Fine-tunin,
1, G @ 8
@ Novel classes i @ i, I. - @ .......... »

E @ E Node embedding

(b) Fine-tuning on Few-shot Labaled Nodes

Methodology Overview of Transductive Linear Probing (TLP) [1] with unsupervised GCL methods

[11 Tan, Z., Wang, S., Ding, K., Li, J., and Liu, H. Transductive linear probing: A novel framework for few-shot node classification. In Learning on Graphs Conference, 2022.



Introduction
- Challenges in FSNC: Why GCL methods are Insufficient?

« Class Imbalance Problem
- However, GCL methods are vulnerable to the Class Imbalance in the graph;

- GCL methods have difficulty in learning about nodes from minority classes
- Also, without knowledge of the type of downstream task during training, GCL methods lacks generalizability [1] for FSNC,

- As aresult, GCL methods shows much more degraded FSNC performance in more imbalanced setting,

Amazon-Electronics

80
1 ; —
Meta- 1 GCL Settings 3%
B Original S 3
Pareto %
Extreme e

751 Learning !
701 :
I
65_ 1
1
60 :
I
55- !
I
504 :
4 1
45 :
401 1
I

35' T T 1 T T T

ProtoNet NaQ-Feat BGRL SUGRL AFGRL
(Ours)

Impact of the Class Imbalance on Meta-learning vs. GCL methods

[1] Ly, Y., Jiang, X., Fang, Y., and Shi, C. Learning to pre-train graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4276-4284, 2021.



13

Introduction

- Solution: Unsupervised Graph Meta-learning

 Solution: “Unsupervised Graph Meta-learning”

- “Unsupervised”: we can utilize all nodes in a graph during training of graph meta-learning methods

- “Meta-learning”: model can learn downstream task format information by episodic learning framework

- Thus, we propose Unsupervised Episode Generation methods to achieve above both properties

Training Episodes {7.},_;

Episode
Generation

Our Focus:
Unsupervised Episode Generation
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Introduction

- Solution?: Unsupervised Graph Meta-learning

e Challenge

- Supervised Episode Generation: can be done easily with labeled data (X,, Y, ) in base classes C,

- After sampling N classes, sample K + Q nodes to make K-shot support set and Q-query query set

- Unsupervised Episode Generation: only with “unlabeled” data X, how can we generate training episodes?

Episode
Generation

via True labels

Graph-structured Data G with Labels Y., Training Episodes {7 };_,

Ordinary Supervised Episode Generation

N e

! 1
| I
! I
Episode : .
Generation | 1
| |
with What? ! |
| I
| 1
| 1
| I
' Y T ,'
AN - Support Set S;  Query Set Qg e
Graph-structured Data G without Labels Training Episodes {7;},;-,

Unsupervised Episode Generation?



Introduction

- Related Works: Unsupervised Meta-learning in Computer Vision

e Unsupervised Meta-learning via Augmentation
- UMTRA[1] / AAL [2] utilizes image augmentation to generate queries of randomly sampled N support set

- UMTRA: randomly sample N samples to make support set, and apply image augmentation on them to make query set
- Only generates 1-shot support set to assure that randomly sampled images to have different labels

Supervised MAML UMTRA
c 5 % X AR R
! ® o A @
2 CLz O (@)
1 2 3 Update 1 2 3 .. N E> 9 Update
3 CL‘ model =A model
_ v \ parameters v | \ , parameters
: Xy Xy Xg based on ® Xy Ay x3 X E> based on
- 0 outer loss AO) AC ) AD) AA) A®) outer loss
Cc
1200,
. C, 1|23 1.2 3 . Ny ()
Sample N classes Sample 2 data points from each class Sample N data points x, = Ax,)

Supervised MAML vs. UMTRA [1]

[1] Khodadadeh, S., Boloni, L., and Shah, M. Unsupervised meta-learning for few-shot image classification. Advances in neural information processing systems, 32, 2019.
[2] Antoniou, A. and Storkey, A. Assume, augment and learn: Unsupervised few-shot meta-learning via random labels and data augmentation. arXiv preprint arXiv:1902 09884, 2019.



Introduction

- Related Works: Unsupervised Meta-learning in Computer Vision

e Unsupervised Meta-learning via Augmentation

- UMTRA[1] / AAL [2] utilizes image augmentation to generate queries of randomly sampled N support set

- AAL: Randomly sample N x K images, then make N-way K-shot support set by randomly assigning pseudo-labels

U <od J_ v Algorithm 2 Unsupervised MAML Sampling Strategy
;;:z:v('i)) - R;:?:CTW x5 Xr Support Set 1: Require: Dataset D with I number of data-points
Data- o S = {xs5.ys} I 2: Sample N x K data-points from D, where N is the num-
HEIRIEN Points [] Apply Data ber of classes per set'and K is the number of samples
D D D |:| D ] *Augmentation®[ |n ———— perclass (N x K) < [
D |:| D |:| D Randomly D on xg — Target Set 3: Build the support set S by assigning random labels to
Assign T = {x1,ys5} the previously NV x K sampled data-points
1010010 Labels [] [ ] . J 4: Build the target (evaluation) set E' by augmenting the
— — support set S samples and keeping the labels identical
| > s 5: Return 5, F
Overview of AAL [2] Unsupervised Episode Generation of AAL [2]

[1] Khodadadeh, S., Boloni, L., and Shah, M. Unsupervised meta-learning for few-shot image classification. Advances in neural information processing systems, 32, 2019.
[2] Antoniou, A. and Storkey, A. Assume, augment and learn: Unsupervised few-shot meta-learning via random labels and data augmentation. arXiv preprint arXiv:1902 09884, 2019.
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Proposed Methodology: Neighbors as Queries (NaQ)

- Motivation

e Closer Look at Episodic Learning Framework

Support set = provides basic information about the task to be solved

Query set = enables the model to understand how to solve the given task by making prediction on queries

« Existing Episode Generation methods

Supervised: Queries of support set have same labels = Queries and Support set share similar semantics

UMTRA/AAL: By augmentation, make queries having similar semantic with support set

Share Labels - Similar Semantics

~
Support Set 5;,  Query Set @y,

Augmentation = Similar Semantics

Il_l
Quw
0% %
O % %,

‘\YJ\ﬂ—J

Support Set Sy, Query Set Qg

7

Therefore, queries should share similar semantics with the support set
> “Similarity” Condition on Queries
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Proposed Methodology: Neighbors as Queries (NaQ)

- Motivation

e Claim: Similarity Condition on Query set

- Unsupervised Episode Generation: How to sample queries that share similar semantics with support set samples?

e Proposed Solution: Neighbors as Queries (NaQ)
- Find similar nodes of each support set node as queries!

- NaQ-Feat: use raw feature-level similarity / NaQ-Diff: use structural-level similarity measured by graph Diffusion [1]

NaQ: Use feature-level or structure-level similar nodes!

Episode
Generation

with What?

,______________.
..-—————————————

Graph-structured Data G without Labels Training Episodes {7} },-,

[1] Gasteiger, J., Weiltenberger, S., and Giinnemann, S. Diffusion improves graph learning. Advances in Neural Information Processing Systems, 32, 2019.
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Proposed Methodology: Neighbors as Queries (NaQ)

- Methodology Overview: NaQ-Feat

Raw Feature-based Node-Node Similarity Calculation

f Normalized Node Feature X

V] B e Y

Uy R ]

LT AU

\ Y |

Node-Node Similarity Matrix S

V1 V2 Uy
v, 1.0 03 - 07
v, 03 1.0 - 06

~N

Random Sampling Initial Support set ST

( Randomly sampled T sets of N nodes

Assign distinct pseudo-labels

OO Oy O
Oo Oo

»

Methodology Overview of the NaQ-Feat

Similarity-based Query Generation

( ( \
000 0]
Higher( ; : : : : N
20D @
| 2@@C @
£ _ Or,
7 .
000 @)
Lower
\ Generated Task J; )




Proposed Methodology: Neighbors as Queries (NaQ)

- Methodology Details

« Node-Node Similarity Calculation
- Per dataset, we calculate node-node similarity matrix with raw node feature for sampling similar node as queries

- As it can be done in pre-processing phase, it does not cause large computational cost

« Similarity Metric Choice

- For bag-of-words raw node feature, we used cosine similarity

- For continuous-type raw node feature (e.g. word embeddings), we used Euclidean distance

Raw Feature-based Node-Node Similarity Calculation

[ Normalized Node Feature X Node-Node Similarity Matrix S \
V) FEESSSTSTTTTTTERRTRYRY V1 V2 V)
U o e ] (%1 1.0 03 -+ 0.7
V3 B s s s e e Y ‘ Uy 03 1.0 -+ 0.6

k Uy | ] U|V| 0.7 0.6 - 1.0 )

Similarity Calculation Process of the NaQ-Feat
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Proposed Methodology: Neighbors as Queries (NaQ)

- Methodology Details

» Support set Generation

Similar to UMTRA, we randomly sample N nodes from the entire graph, then regard each of them as distinct support set

To assure sampled N nodes (corresponding to ‘N-way’) are distinguishable as much as possible,
only 1-shot support set is generated regardless of the downstream task setting

Random Sampling Initial Support set S:rt

( Randomly sampled T sets of N nodes Assign distinct pseudo-labels

OO On O
OO Oo

Support set Generation Process of the NaQ-Feat




Proposed Methodology: Neighbors as Queries (NaQ)

- Methodology Details

. Query set Generation Similarity-based Query Generation

- For each support set node, we sample Top-Q similar node as queries (" ( ) )
S
- Sampled Q queries are given the same pseudo-label with corresponding support set node L@ @ @ e ) Tt
- Support set node itself is excluded during the query sampling process Higherf@ @ @ - @\ N
| @2@@C ®
: : e
n n
000 0@
Lower
Generated Task J;
\_ t J

Query set Generation Process
of the NaQ-Feat

22
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Proposed Methodology: Neighbors as Queries (NaQ)

- An Extension to NaQ: NaQ-Diff

* Motivation

NaQ-Feat solely relies on raw node feature X, without considering structural information of the graph

However, structural information can be crucial depending on the target domain

In citation networks, citation relationship between papers implies that they share similar semantics (related topics)

Therefore, considering structurally similar nodes as queries can be more beneficial in such cases

! QO :Node: papers |
i — :Edge; citation relationships |

Computer

Vision

Scene
Generation l Robustness
@ ‘

Adversarial

Graph
Few-Shot
Learning
Attack

Meta
Learning

Toy Example of the Citation Networks
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Proposed Methodology: Neighbors as Queries (NaQ)

- Methodology Overview: NaQ-Diff

Diffusion-based Node-Node Similarity Calculation

ol - 5

Original Graph Re-weighted Graph by Diffusion

Random Sampling Initial Support set St,

f Randomly sampled T sets of N nodes Sfrl ST
O O[O0 o [o0~0
\O o)lo O O O

2

S,

T

~N

- [Jo, oot @

Methodology Overview of the NaQ-Diff

Similarity-based Query Generation
4 L)

@@@ O s

ngher :

Similarity
Q
S

@00 @)

Lower

\ Generated Task 7

J
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Proposed Methodology: Neighbors as Queries (NaQ)

- Methodology Details

« Node-Node Similarity Calculation

NaQ-Diff differs from NaQ-Feat in only the similarity calculation process

- Graph Diffusion [1] matrix defined as S = }:;°_, 0, T¥ is leveraged for measuring structural similarity between nodes

- 0, weighting coefficients, T: generalized transition matrix calculated with graph adjacency matrix and degree matrix

We interpret edge weights of diffusion matrix S as structural closeness between nodes

Diffusion-based Node-Node Similarity Calculation

-

Lol - i

Original Graph Re-weighted Graph by Diffusion

Similarity Calculation Process of the NaQ-Diff

[1] Gasteiger, J., Weiltenberger, S., and Gtiinnemann, S. Diffusion improves graph learning. Advances in Neural Information Processing Systems, 32, 2019.
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Proposed Methodology: Neighbors as Queries (NaQ)

- Model Training with Episodes generated by NaQ

« How to Train existing Graph Meta-learning Methods?

- Training Episodes generated by NaQ follow the same, common format of the ordinary supervised episode generation

- Hence, any of existing graph meta-learning methods can be trained in unsupervised manner by NaQ

 Notes

- As NaQ generates training episodes with all nodes in a graph, existing graph meta-learning methods can fully utilize
all nodes in a graph

Algorithm 1 Training Graph Meta-learning methods with NAQ
Require: Bundle of training episodes {7;}L_,, Meta-learning model Meta( - ;8), learning rate 1.

Randomly initialize model parameter 6
fort=1,---,7T do
Step 1: Calculate loss £ by Meta(7¢; 0)
Step 2: Update 6 «+ 0 —nVyL
end for
return Meta(7;;0)

Training Process of existing Graph Meta-learning methods with NaQ
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Model Analysis: Why NaQ can work?

- Theoretical Insights: Which similarity condition should NaQ satisfy?

« “Generalization Error” Perspective

- Assumption: y = f(x) + € (E[e] = 0, Var(e) = 02 < o), error metric £: Mean-Squared Error;

E[£(y", fs(x))] = (ELfs(x)] = £())" + (E[fs(x)?] — Elfs(x)]?) + o2

- §S:training set, f;: model trained on S, (x', y'): test set point, f: true, unknown estimation

e Closer Look at a Single Update Process of MAML [1]

- Consider a single episode T = (Sy, Q1) with encoder f, Inner-loop optimization - “Training™ fo on Sy

Support set Sr _ I
i Sample K datapoints D = {x), y9} from T I
: Evaluate Vo L7 (fo) using D and L1 I
i Compute adapted parameters with gradient descent::

- If we regard S as training set, Qs as test set, We can interpret that
MAML’s training process as “Reducing Generalization Error” below [2]

E[L(y"™, for (7)) = (E[for (z7Y)] — fr(z®™))

Y\ 2 ry\12 2 V' =0 —aVeLl /
+ (E[fg/(xq y) ] - E[f@’(il?q y)] ) +o ~ :::::_9:2;_:7;—(;?:1:::6—)::(ﬂ—::::::::\
(x"Y,y97Y): single query, f;: unknown, true estimation on T (- Sample datapoints D’ = {X Y } from 7. for the,
- ] " N r | _ Q t
| meta update uery set Qr :
- Hence, accurate calculation of Eq. (2) is crucial for better training, I ’ . :
since it is used as Loss function [2] 1Update & < 0 — 8V > - 7y L7 (for) using each D’
'and L1 1

Outer-loop optimization - “Reducing Generalization Error” on Q;

[1] Finn, C,, Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning PMLR, 2017.
[2] Khodadadeh, S., Boloni, L., and Shah, M. Unsupervised meta-learning for few-shot image classification. Advances in neural information processing systems, 32, 2019.
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Model Analysis: Why NaQ can work?

- Theoretical Insights: Which similarity condition should NaQ satisfy?

e Analysis

- For accurate estimation of Eq. (2), true label of query and corresponding support set should be the same

- Otherwise, unexpected error § s.t. y9Y = f-(x9"Y) + € + § can occurs, which lead to “suboptimal solution”

- Supervised episode generation naturally have § = 0

« Our Claim: “Class-level Similarity” Condition on Queries for Unsupervised Episode Generation

- If we can sample “class-level similar” enough queries for each support set node, undesirable error § will be small enough

- Then, model f, can be trained successfully with loss function Eq. (2)

- Therefore, “Class-level similarity” condition on queries have to be satisfied by NaQ

E[L(y"™, for ()] = (E[for (z7Y)] — fr(z®))

5 ) ) = (2)
+ (E[for (z7)*] = Elfor ("¥)]*) + 0
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Model Analysis: Why NaQ can work?

- Empirical Analysis: NaQ satisfies Class-level Similarity Condition

e Empirical Analysis
- We measured averaged class-level similarity between each node and top-10 similar nodes found by NaQ

- Class-level similarity between two nodes: similarity between their class centroids

- In most of cases, NaQ-Feat and NaQ-Diff can discover high enough (~80%) class-level similar queries in real-world datasets

Bl NaQ-Feat (Top-10) I NaQ-Diff (Top-10)

=
o
o

Class-level similarity (%)
B (@) (o]
< < <

I
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
|

N
o
1

Amazon- Amazon- Cora-Full DBLP

Clothing Electronics

Averaged class-level similarity between each node and top-10 similar nodes
found via NaQ-Feat and NaQ-Diff
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Model Analysis: Why NaQ can work?

- Empirical Analysis: NaQ satisfies Class-level Similarity Condition

e Empirical Analysis

- We measured averaged class-level similarity between each node and top-10 similar nodes found by NaQ

Summary

1) NaQ should find “Class-level Similar Queries”
to enable unsupervised graph meta-learning

2) NaQ can discover Class-level Similar Queries
in real-world datasets

Thus, NaQ can work within episodic learning framework!

Amazon- Amazon- Cora-Full DBLP
Clothing Electronics

Averaged class-level similarity between each node and top-10 similar nodes
found via NaQ-Feat and NaQ-Diff
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Experiments

- Experimental Settings: Evaluation Datasets

e Evaluation Datasets

- Total five benchmark datasets were used in evaluation

- Two product networks (Amazon-Clothing/Electronics) and Three citation networks (Cora-Full, DBLP, ogbn-arxiv) were used

- ‘Class split’ means the number of distinct classes used to make episodes in training (supervised only), validation, and testing phase

e Details

- Amazon-Clothing: edges are ‘also-viewed’ relationships between products; node class is product category

- Amazon-Electronics: edges are ‘bought-together’ relationships between products; node class is product category

- Node class of Cora-Full: paper topic / DBLP: venue where the paper is published / ogbn-arxiv: subject area in CS papers

Dataset # Nodes # Edges # Features # Labels Class split Hom. ratio
Amazon-Clothing 24,919 91,680 9,034 77 40/17/20 0.62
Amazon-Electronics 42,318 43,556 8,669 167 90/37/40 0.38
Cora-Full 19,793 65,311 8,710 70 25/20/25 0.59
DBLP 40,672 288,270 7,202 137 80/27/30 0.29
ogbn-arxiv 169,343 1,166,243 128 40 15/10/15 0.43

Dataset Statistics
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Experiments

- Experimental Settings: Baselines and their Settings

« Compared Baselines

Total ten baseline methods were used in evaluation

Used six graph meta-learning baselines: MAML, ProtoNet, G-Meta, TENT, GLITTER, and COSMIC

- MAML, ProtoNet: Representative meta-learning methods

- G-Meta: Representative Graph meta-learning method

- TENT, GLITTER, COSMIC: Recent (2022~) Baselines

Used three recent (2022~) GCL baselines: BGRL, SUGRL, and AFGRL for the comparison with TLP

Lastly, graph transformer-based, unsupervised baseline VNT was used
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Experiments

- Results: Overall Performance Analysis

Results in Product Networks

Results in Large-scale dataset ogbn-arxiv

Dataset Amazon-Clothing Amazon- Electronics Dataset ogbn-arxiv
Setting 5 way 10 way Avg. 5 way 10 way 20 way Avg. Setting 5 way 10 way
Baselines 1 shot 5 shot 1 shot 5 shot Rank 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot Rank Baselines 1 shot 5 shot 1 shot 5 shot
MAML (Sup.) 7613117 84.28%0s7  63.77x0s3  76.95%06s | 10.25 | 65.58%126 78.55%09 57.31%0s7  67.56%073 46.37H061  60.04%05 | 9.33 MAML (Sup.) 40.61%080 58.75+0s0 27.32+40s55 43.87+056
ProtoNet (Sup.) 75524112 89.76%070 65.50%0s2 82.23%0c2 | 7.25 | 69.48+122 84.81+0s2  57.67+0ss  75.79+067 48.41+0s7 67.31+0a7 | 5.83 ProtoNet (Sup.) 43.34+101  58.30095 28.17+060  46.11%060
TENT (Sup.) 7946110 89.61%070 69.72%0s0 84.74%0se | 5.25 | 723114 85.25%0s1  62.13%0s3 77324067 52.45%060  69.39%050 | 4.00 TENT (Sup.) 48.06+097 63.45+0ss 33.85%065 48.14%059
G-Meta (Sup.) 78.67x10s  88.79+076 6530079 80.97%0s0 | 775 | 7226116 8444083  61.32+086  74.9240m1 50394050 65.73%04s | 5.67 G-Meta (Sup.) 41.06%087 59.43+087  27.20%053  45.04+053
GLITTER (Sup.) 75.73x110  89.18+074  64.30x079  77.7340es | 9.00 | 66.91+1220 82.59+083 57.1240s88 76.26%067  49.23x0s7  61.7740s52 | 7.00 GLITTER (Sup.) 35.64+097 34.51%0s5s 20.95+0s0 21.84+047
COSMIC (Sup.) 82244090 91.224073 74.44+4075 81.58+06 | 3.75 | 72.61%10s 86924076 65244052  78.00%0es 58.71+0s7  70.29404s | 3.00 COSMIC (Sup.) 50.324095 63.54%0s0 38.41+062 49.31%0s1
TLP-BGRL 81.42+105s  90.53+071  72.05+0s6 83.64%063 | 4.25 | 6420100 81.72+0s5 53.16%0s2  73.70%0e6 44.57+0s2  65.13+047 | 8.67 TLP-BGRL 49.88+101  69.10x0s2  36.40+062  56.15%054
TLP-SUGRL 63.32+119  86.35%073  54.81x077  73.10%0e3 | 11.50 | 54.76x106 T8.124092 46.51+0s0 68.41%07m1  36.08%0s2 57.78%040 | 11.67 TLP-SUGRL 49254097  62.15+092 32.87+061  45.76%0.60
TLP-AFGRL 78124113 89.824073  T1.12+081 83.88+06 | 5.25 | 59.07x107  81.15%08s 50.71x0ss 73.87%0e6 43.10k0ss 65.444048 | 9.00 TLP-AFGRL OOM OOM OOM OOM
VNT 65.09+123 85.86%076 62.43+081 80.87+0e3 | 10.50 | 56.69+122  T8.02+097 49.98+0s3  T0.51%073  42.10%0s3 60.99+0s0 | 10.83 VNT OOM OOM OOM OOM
NAQ-FEAT-Best (Ours) | 86.58+09 92.27+067 79.55%078 86.10%060 | 1.00 | 76.46+111  88.72+073  69.59+0s6 8l.dd+061  61.05+059 74.60%047 | 1.00 NAQ-FEAT (Ours) | 54.09+103 69.94+0s5s 41.61*06s 58.18%0.50
NAQ-DIFF-Best (Ours) | 84.40x100 91.724060  73.39+070 84.8240ss | 2.25 | 74.16+108 87.09+075 65954081 79.134060 60.40%0s0 73.754042 | 2.00 NAQ-DIFF (Ours) | 51.45+10¢ 66.73%080 39.27+067 55.93%056
Results in Citation Networks
Dataset Cora-full DBLP
Setting 5 way 10 way 20 way Avg. 5 way 10 way 20 way Avg.
Baselines 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot Rank 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot Rank
MAML (Sup.) 59.28+121 70304099 44154081 57.59+066  30.99%043  46.80+03s | 9.67 | 72484122 80.30%+103  60.08%090 69.85+076  46.12%0s3  57.30%04s | 8.50
ProtoNet (Sup.) 58.61%x121 73.91%003  44.544070 62.15%064 32.10%042  50.87%040 | 7.67 | 73.80%£120 81.33x100 61.88%0s6 73.024074 48.70%0s52 62.42+045 | 4.33
TENT (Sup.) 61.30%11s 77324081 4730080 66.40+062 36402045 55774030 | 4.50 | 74.01£120 82.54%100 62.95+0s5 73.26k077 49.67x0s53  61.87x047 | 2.67
G-Meta (Sup.) 59884126  75.36%0sc  44.3440s0  59.59+4066  33.25%042  49.00%03 | 7.50 | 74.64+120 7996108 61.5040s8  70.33t077  46.070s2  58.38+047 | 7.00
GLITTER (Sup.) 55.17%118 69332006 42.81xos1 52764068 30.70x041  40.824041 | 11.50 | 73.50%125  75.90+110 00T 00T OOM OOM 9.50
COSMIC (Sup.) 62.24%115  73.85%083  47.85+077  59.11%060 42.25+0s3  47.28%03s | 6.33 | 7234+ 80.83%103  59.21o0s0  T0.67+071 49524051 59.01%0s2 | 7.50
TLP-BGRL 62594113 78.80%0s0 49.43%079  67.18%061  37.63%0a4  56.26%03 | 3.17 | 73.92+100 82424095  60.16%0s7  72.13+07a  47.00%0s53  60.57+045 | 4.83
TLP-SUGRL 55424108 76.01%084  44.66%071  63.69%062  34.23%041 52.76%0.40 6.33 T1.27+10s  81.36%1m:  58.85%0s1  71.02+078  45.71%040  59.77%04s 8.17
TLP-AFGRL 55244102 75924083 44084070 64424062  33.882041  53.83%030 | 717 | 71.18%117  82.03%09s  58.70x0s6  T1.14%075 4599053 60.3104s | 7.83
VNT 47.53+114 69944080 37794060 57.71%0es 28782040  46.864040 | 11.17 | 58214116 76.25%105  48.75t0s1 60374077  40.104049  55.154046 | 11.17
NAQ-FEAT-Best (Ours) | 66.30+11s  80.09%079 52.23%073 068.8740e0 44.13%047  60.94403 | L33 | 73554106  82.36409s  60.70+0s7  72.36+073 50424052 64.90%043 | 3.67
NAQ-DIFF-Best (Ours) | 66.26x115  80.07+079 521740714 6934406  44.124047 60974037 | 1.67 | 76.58+11s  82.86%095 64.31+0s7  74.06x075 51.62+0s54 64.78+044 | 1.17

Across all of the settings,

proposed NaQ can outperform all the baselines




Experiments
- Results: Model-agnostic Property of NaQ

mmwm Supervised i NaQ-Feat = NaQ-Diff

Amazon-Clothing Amazon-Electronics Cora-Full DBLP
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Results of applying NaO-Feat and NaQ-Diff to existing graph meta-learning models vs. Supervised (5-way 1-shot)
Amazon-Clothing Amazon-Electronics Cora-Full DBLP
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Results of applying NaO-Feat and NaQ-Diff to existing graph meta-learning models vs. Supervised in Higher way settings
(Amazon Clothing: 10-way 1-shot, Others: 20-way 1-shot)

Generally, proposed NaQ can retain or even improve the performance of graph meta-learning methods
(Note: Supervised methods had access to all, clean labeled samples of entire base classes)
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Experiments
- Results: t-SNE Plot of tail-class node embeddings

Top-10 Tail Classes

Class 0 Class 1 ® Class2 ® Class 3 ® Class 4 ® Class5 ® Class 6 ® Class7 Class 8 Class 9

NaQ-Diff

t-SNE plot of top-10 tail-class node embeddings in Cora-Full Dataset (Citation Network)

NaQ can be more robust to the Class Imbalance in the graph than GCL methods
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Experiments

- Additional Empirical Results & Analysis

Robustness against the Class Imbalance of Graph Meta-learning methods (pp. 40 and 41 in Appendix)

- NaQ can be robust to the class imbalance since class-level similar queries of tail-class nodes can provide helpful information
for learning tail-class node embeddings

- Downstream task format information obtained by episodic learning is beneficial for attaining robustness

Impact of Similarity Metric Choice on NaQ-Feat (pp. 42 in Appendix)

- In summary, proper metric choice is essential for NaQ-Feat

Impact of the number of queries Q (pp. 43 in Appendix)

- In summary, when NaQ can find highly class-level similar queries, increasing Q can lead to the better performance

Regarding Query-overlap Problem of NaQ (pp. 44 in Appendix)

- Generally, guery overlap among distinct query set is negligible for NaQ

- For some exceptional cases, dropping such overlaps can be a promising solution
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Conclusion

- Summary of the dissertation

e Problems of Current Approaches

- Existing graph meta-learning methods cannot fully utilize all nodes in the graph, as they solely rely on the given label
information

- Naive application of unsupervised GCL methods on FSNC is vulnerable to Class Imbalance since there is no information on
downstream task format, which also leads to the low generalizability [1] of the trained model when solving downstream tasks

e Solution

- Proposed NaQ enables the unsupervised graph meta-learning, thus downstream task format-aware training
with all nodes in the graph is allowed

- By sampling queries based on pre-calculated node-node similarity, NaQ can successfully generate training episode
that can be applied to existing graph meta-learning methods for their unsupervised training

- Extensive experiments and analyses demonstrate effectiveness of our NaQ

[1] Ly, Y., Jiang, X., Fang, Y., and Shi, C. Learning to pre-train graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4276-4284, 2021.
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Conclusion

- Limitation & Future Work

e Computational Issue of NaQ-Diff

- Current technical issue on sparse matrix multiplication, even truncated approximation of graph Diffusion cannot be computed
for datasets having a large number of edges

- This problem hinders the applicability of NaQ-Diff to large real-world datasets

- Therefore, devising an unsupervised episode generation method that can fully leverage the structural information
while reducing computational costs will be promising future work

e Naive Support set Generation - False-negative Problem

- NaQ depends on naive random sampling for support set generation

- For this reason, there is a possibility that nodes having the same label can be assigned to a distinct support set ( False-negative
Problem), although NaQ tries to avoid such problem by generating only 1-shot support set

- Hence, developing a more sophisticated algorithm that can alleviate the false-negative problem while generate a K-shot
(K >» 1) support set will be valuable future work
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Appendix

- Analysis: Why NaQ can attain robustness against the Class Imbalance?

e Supervised Graph Meta-learning
- In a single episode, all classes in base classes are treated equally regardless of Imbalance

- With an aid of task format information provided by episodic learning, supervised graph meta-learning can attain robustness

« Unsupervised Graph Meta-learning with NaQ

- NaQ still can sample “class-level similar” queries to the support set nodes from tail classes

- NaQ-Feat can still find high enough similar queries in product networks, while NaQ-Diff find high enough similar queries in citation networks

- Such class-level similar queries can provide useful information for learning tail-class embeddings

- Also, with task format information provided by episodic learning, NaQ can attain robustness against Class Imbalance

Datasets Amazon-Clothing Amazon-Electronics Cora-Full DBLP
top-p% NAQ-FEAT NAQ-DIFrF | NAQ-FEAT NAQ-DIFr | NAQ-FEAT NAQ-DIFF | NAQ-FEAT NAQ-DIFF
tail classes
10% ~78.7% ~75.2% ~72.3% ~48.2% ~69.7% ~T77.9% ~66.6% ~75.1%
20% ~81.3% ~T78.2% ~T74.1% ~51.6% ~70.7% ~T7.6% ~68.3% ~78.0%
50% ~81.7% ~80.7% ~T77.8% ~53.0% ~T74.6% ~81.8% ~70.4% ~80.9%
80% ~80.8% ~79.0% ~78.9% ~52.5% ~T77.8% ~84.6% ~T71.9% ~82.1%
100% ~81.6% ~78.8% ~81.9% ~52.7% ~79.8% ~86.0% ~73.5% ~83.0%

Averaged class-level similarity between each node from top-p% tail classes

and top-10 similar nodes found by NaQ-Feat and NaQ-Diff



Appendix

- Analysis: Role of the Episodic Learning Framework for attaining robustness against the Class Imbalance

 |s Episodic Learning really beneficial for the Class Imbalance?

- To demonstrate the effectiveness of downstream task ‘format’ information provided by episodic learning,

we observed the change in tail-class node embedding quality when N-way becomes larger

- In Amazon-Electronics, NaQ-Diff have difficulty in finding class-level similar queries

- Surprisingly, training with more challenging episodes ( 20-way training episodes) lead much better

tail-class node embedding quality for NaQ-Diff

-
o
S

B NaQ-Feat (Top-10)

NaQ-Diff (Top-10)

®
=}

Class-level similarity (%)

o
o
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o
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v .
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Clothing Electronics|

Cora-Full DBLP

Averaged class-level similarity between each
node and top-10 similar nodes found via NaQ

- Therefore, we can conclude that Episodic Learning does attribute to attain robustness against the Class Imbalance
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Top-10 Tail Classes

Class 0 Class 1 ® Class 2 ® Class 3 Class 4 ® Class 5 ® Class 6 ® Class 7 Class 8 Class 9
® ‘ °
‘ q.@:‘# . TR |
Sle 9 °9 s . s Wo
~ o TR " ! & *\.:. - %
* oo‘.O*.os‘ .‘-o ° “. .‘.. 'y
oo [ oo ° o o N
h | 2 ° 0 ~
P ...*. ° ’* ° :$‘. .‘... ° : ¥y
e @ - ° °. °
° -:..'. .J;"' '?yn . 5 e ‘::’.. o le il
>0 § “. *eq o.' "O '.' 0% .a' ° ’*
/. i "Q .'.’ ¥ o .. ° ooqmes® °
s ° ..l'\.‘ '0;-‘ ®e °® o 00 & .‘
® o ) @ 'c. ° " ° 5 S o
0.. .: j L] [ o ..o o
‘\.' .... [] \ [ 4 i
.o.' ’o. L ° [
‘ e o &
o °
(a) NaQ-Diff (b) NaQ-Diff

(base-model: ProtoNet trained by “5-way” 1-shot episode) (base-model: ProtoNet trained by “20-way” 1-shot episode)

Impact of higher-way training on tail-class node embedding quality of NaQ-Diff
in Amazon-Electronics
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Appendix

- Ablation Study: Impact of Similarity Metric Choice on NaQ-Feat

e Similarity Metric Choice of NaQ-Feat

- Similarity metric is an important factor for NaQ-Feat, as inappropriate choice can lead to wrong selection of queries

- For datasets having bag-of-words features, Euclidean distance is inappropriate so thatboth class-level similarity of queries
and FSNC performance are degraded

- In case of Jaccard similarity, as it is similar to cosine similarity when measuring similarities in bag-of-words data,
NaQ-Feat with both similarity metric shows similar FSNC performance

- However, Jaccard similarity is cannot be computed with continuous features = cosine similarity is more general

- In summary, choosing appropriate similarity metric is important for NaQ-Feat

Datasets Avg. Class-level sim. | Avg. Class-level sim. Datasets FSNC Accuracy | FSNC Accuracy FSNC Accuracy
(Feature type: bag-of-words) (Cosine sim.) (Neg. Euclidean dist.) (Feature type: bag-of-words) (Cosine sim.) (Jaccard sim.) | (Neg. Euclidean dist.)
Amazon-Clothing ~ 81.6% ~ 61.0% Amazon-Clothing 83.77% 83.35% 80.83%
Amazon-Electronics ~ 81.9% ~ 64.6% Amazon-Electronics 76.46% 76.63% 70.68%
Cora-Full ~ 79.8% ~ 40.4% Cora-Full 64.20% 63.53% 45.60%
DBLP ~ 73.5% ~ 19.1% DBLP 71.38% 72.68% 67.53%
Impact of Similarity Metric Choice on class-level similarity Impact of Similarity Metric Choice on FSNC performance
of top-10 similar nodes found by NaQ-Feat of NaQ-Feat (5-way 1-shot, base-model: ProtoNet)
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Appendix

- Hyperparameter Sensitivity Analysis: Impact of number of queries Q

Amazon-Clothing

- Both NaQ-Feat and NaQ-Diff can discover highly class-level similar queries
- both show increasing tendency as Q increases

Amazon-Electronics

- NaQ-Feat shows increasing tendency as in Amazon-Clothing, due to the same reason

- NaQ-Feat shows decreasing performance after Q = 5, due to relatively low class-level
similarity of discovered queries

DBLP

- NaQ-Diff shows increasing tendency as Q increases, while NaQ-Feat shows consistent
performance by number of queries

Summary

- Like the case of NaQ-Diff in Amazon-Electronics, proper choice of Q is essential

- Otherwise, label noise that can hinder model training can be introduced

- As NaQ-Diff can find more class-level similar queries than NaQ-Feat in DBLP,
motivation of utilizing structural neighbors as queries in such datasets is validated
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Appendix

- Analysis: Regarding the Query-overlap Problem of NaQ

e Query-overlap Problem

Datasets

Amazon-Clothing

Amazon-Electronics

Cora-Full DBLP
N-way | NAQ-FEAT NAQ-DIFF | NAQ-FEAT NAQ-DIFF | NAQ-FEAT NAQ-DIFF | NAQ-FEAT NAQ-DIFF
5 0.1573% 0.9978% 0.0871% 11.1715% 0.2206% 0.4743% 0.1826% 0.0605%
10 0.3855% 2.0769% 0.2118% 16.9618% 0.5101% 1.0138% 0.4108% 0.1389%
20 0.7834% 4.0358% 0.4457% 21.4706% 1.0221% 2.0151% 0.8559% 0.3054%

Averaged query overlap ratio within 16,000 training episodes generated by NaQ

Situation where sampled query sets corresponding to each distinct support set have intersection can happen for NaQ,

which might be problematic during the model training

In real-world datasets, query overlap is generally rare, as shown in the table above

« Impact of Dropping Query Overlaps

When query overlap is significant (NaQ-Diff in Amazon-Electronics), dropping query overlaps have shown remarkable effect

However, when query overlap is negligible, dropping queries shows no dramatic improvements on the performance

In summary, query overlap is generally negligible in real-world datasets, and dropping query overlaps can be

a promising solution for some exceptional cases

Amazon-Electronics

] NAQ-DIrr NAQ-DIFF
Setting
(Original ver.) (Overlap drop ver.)
5-way 1-shot 68.56+1.18% 69.77+£1.17%

10-way 1-shot | 59.464-0.86%

49.2440.59%

61.981+0.86%

20-way 1-shot 52.15+0.60%

Impact of dropping overlapping queries on NaQ-Diff
(When query overlap is significant)

Cora-Full
) NAQ-FEAT NAQ-FEAT
Setting
(Original ver.) (Overlap drop ver.)
5-way l-shot | 64.20£1.11% 63.37£1.08%

10-way 1-shot
20-way 1-shot

51.78+0.75%
40.11+0.45%

52.3240.75%
40.27£0.48%

Impact of dropping overlapping queries on NaQ-Feat
(When query overlap is negligible)
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