

Unsupervised Episode Generation for Graph Meta-learning

Jihyeong Jung¹, Sangwoo Seo¹, Sungwon Kim², Chanyoung Park¹²

Department of Industrial & Systems Engineering¹, Graduate School of Data Science², KAIST

Accepted in the 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria.

Contents

- Introduction
 - Few-Shot Node Classification: Few-shot Learning on Graph-structured Data
 - Challenges in Few-Shot Node Classification
- Proposed Methodology: Neighbors as Queries (NaQ)
 - Motivation
 - Model Training with Episodes generated by NaQ
- Model Analysis: Why NaQ can work?
 - Theoretical Insights
 - Empirical Analysis
- Experiments
- Conclusion
- Appendix

- Preliminaries: Frequently used Notations

Graph-structured Data ${\mathcal G}$

${\mathcal G}$	$= (\mathcal{V}, \mathcal{E}, X);$ given graph-structured data
\mathcal{V}	a set of nodes
${\cal E}$	$\subset \mathcal{V} \times \mathcal{V}$; a set of edges
Χ	a <i>d</i> -dimensional node feature matrix, or a set of node features $\{x_v : v \in \mathcal{V}\}$
С	a set of total node classes; $C = C_b \cup C_t$
C_b	base classes, a set of node classes that can be utilized during training
C_t	target classes, a set of node classes that have to be recognized in downstream FSNC tasks
\mathcal{T}	$= (S_T, Q_T);$ a N-way K-shot Q-query (training or testing) episode (task)
$S_{\mathcal{T}}$	a support set, a set of given a few-labeled samples in ${\mathcal T}$
$Q_{\mathcal{T}}$	a query set, a set of unlabeled samples have to be predicted in ${\cal T}$
N	a number of <i>way;</i> i.e., number of distinct classes have to be classify within ${\mathcal T}$
Κ	a number of labeled samples (support set) given for each class (i.e., way) in ${\cal T}$
Q	a number of queries given for each class in ${\mathcal T}$
f_{θ}	a model have to be trained (i.e., GNN encoder)
θ	a model parameter

Frequently used, important Notations

- Preliminaries: Few-shot Learning
 - Few-shot Learning (FSL)
 - <u>Challenge</u>: Deep Neural Networks (DNNs) show poor generalizability for unseen classes with only a few-labeled samples
 - <u>Objective</u>: Like humans, machines should be able to learn from a few-labeled samples to recognize unseen classes
 - Dominant paradigm: applying meta-learning methods like MAML [1] and ProtoNet [2] utilizing an **episodic learning framework**

Image: Provided by Sungwon Kim (<u>https://sung-won-kim.github.io</u>)

[1] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning. PMLR, 2017.

[2] Snell, J., Swersky, K., and Zemel, R. Prototypical networks for few-shot learning. Advances in Neural Information Processing Systems, 30, 2017.

- Preliminaries: Few-shot Learning Downstream Task settings

- Formal Downstream task setting in previous studies
 - Following Vinyals et al. [1], *N*-way *K*-shot Few-shot Learning task is common
 - N: <u>number of distinct target classes</u> within the downstream task
 - *K*: <u>number of given a few-labeled samples</u> in each 'support set'
 - *Q*: <u>number of queries have to be classified</u>

G	$= (\mathcal{V}, \mathcal{E}, X);$ given graph-structured data
\mathcal{V}	a set of nodes
E	$\subset \mathcal{V} imes \mathcal{V}$; a set of edges
Χ	a <i>d</i> -dimensional node feature matrix, or a set of node features $\{x_v : v \in \mathcal{V}\}$
С	a set of total node classes; $C = C_b \cup C_t$
C _b	base classes, a set of node classes that can be utilized during training
C _t	target classes, a set of node classes that have to be recognized in downstream FSNC tasks
\mathcal{T}	$= (S_T, Q_T);$ a N-way K-shot Q-query (training or testing) episode (task)
S_T	a support set, a set of given a few-labeled samples in ${\mathcal T}$
$Q_{\mathcal{T}}$	a query set, a set of unlabeled samples have to be predicted in ${\cal T}$
Ν	a number of <i>way</i> ; i.e., number of distinct classes have to be classify within ${\cal T}$
K	a number of labeled samples (support set) given for each class (i.e., way) in ${\cal T}$
Q	a number of queries given for each class in ${\cal T}$
fθ	a model have to be trained (i.e., GNN encoder)
θ	a model parameter

Frequently used, important Notations

- Preliminaries: Episodic Learning Framework
 - Description
 - <u>Instead of using mini-batches</u>, episodic learning trains model by using bundle of tasks $\{\mathcal{T}_t\}_{t=1}^T$, where $S_{\mathcal{T}_t} = \{(x_{t,i}^{qry}, y_{t,i}^{qry})\}_{i=1}^{N \times Q}$ for the stochastic optimization
 - By mimicking the "format" of the downstream task, model f_{θ} is trained to be aware of the task to solve in the testing phase
 - Most of meta-learning methods follow Episodic Learning Framework [1] for the model training

- Preliminaries: Ordinary Node Classification on Graph-structured Data

- Ordinary Node Classification
 - <u>Objective</u>: classifying unlabeled nodes to the one of **known classes**
 - In this setting, entire classes in the graph are already known

Three-class Example of the Process of the Ordinary Node Classification

- Preliminaries: Few-shot Learning in Graph-structured Data

- Few-Shot Node Classification (FSNC)
 - <u>Objective</u>: classifying queries to the one of **unseen classes** (target classes C_t) with a few-labeled nodes (support set) in the downstream FSNC task
 - Only some of classes (base classes C_b) are known during training phase in the supervised setting
 - <u>Current Solution</u>: 1) Meta-learning based methods or 2) utilizing Graph Contrastive Learning (GCL) + Linear probing

3-way 2-shot Example of the Overall Process of the Few-Shot Node Classification

- Challenges in FSNC: Why Supervised Graph Meta-learning methods are Insufficient?

- Label-scarcity Problem
 - Supervised Graph Meta-learning require enough labeled samples from diverse base classes for training → Expensive
 - Otherwise, their FSNC performances are significantly deteriorated (Kim et al. [1], Wang et al. [2])
 - Moreover, the Label-scarcity problem hinders the full utilization of the information of all nodes in a graph

[1] Kim, S., Lee, J., Lee, N., Kim, W., Choi, S., and Park, C. Task-equivariant graph few-shot learning. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2023. [2] Wang, S., Dong, Y., Ding, K., Chen, C. and Li, J. Few-shot node classification with extremely weak supervision. In *Proceedings of the 16th International Conference on Web Search and Data Mining*, 2023.

- Challenges in FSNC: Why Supervised Graph Meta-learning methods are Insufficient?

- Vulnerability to the Label Noise
 - Noisy labels in base classes also hurts FSNC performance of existing graph meta-learning methods
 - It is not always guaranteed that given labels are all clean

Impact of the Label Noise on Supervised Graph Meta-learning Methods

11

- Challenges in FSNC: Why GCL methods are Insufficient?

- Solving FSNC problem with GCL methods
 - Recently, TLP [1] showed that a **simple linear probing on node embeddings produced by GCL methods is better** than existing supervised graph meta-learning methods
 - This is because **GCL methods involve all nodes in a graph for training**, thus <u>TLP can utilize their **effective and generic**</u> <u>**node embeddings**</u> for solving FSNC

Methodology Overview of Transductive Linear Probing (TLP) [1] with unsupervised GCL methods

- Challenges in FSNC: Why GCL methods are Insufficient?

- Class Imbalance Problem
 - However, GCL methods are vulnerable to the Class Imbalance in the graph;
 - GCL methods have difficulty in learning about nodes from minority classes
 - Also, without knowledge of the type of downstream task during training, GCL methods lacks generalizability [1] for FSNC,
 - As a result, GCL methods shows much more degraded FSNC performance in more imbalanced setting,

Impact of the Class Imbalance on Meta-learning vs. GCL methods

- Solution: Unsupervised Graph Meta-learning

- Solution: "Unsupervised Graph Meta-learning"
 - "<u>Unsupervised</u>": we can utilize all nodes in a graph during training of graph meta-learning methods
 - "Meta-learning": model can learn downstream task format information by episodic learning framework
 - Thus, we propose Unsupervised Episode Generation methods to achieve above both properties

- Solution?: Unsupervised Graph Meta-learning

- Challenge
 - **Supervised** Episode Generation: can be done easily with labeled data (X_{C_b}, Y_{C_b}) in base classes C_b
 - After sampling N classes, sample K + Q nodes to make K-shot support set and Q-query query set
 - Unsupervised Episode Generation: only with "unlabeled" data *X*, how can we generate training episodes?

Unsupervised Episode Generation?

Ordinary Supervised Episode Generation

- Related Works: Unsupervised Meta-learning in Computer Vision

- Unsupervised Meta-learning via Augmentation
 - UMTRA [1] / AAL [2] utilizes image augmentation to generate queries of randomly sampled N support set
 - **<u>UMTRA</u>**: randomly sample *N* samples to make support set, and apply image augmentation on them to make query set
 - Only generates 1-shot support set to assure that randomly sampled images to have different labels

Supervised MAML vs. UMTRA [1]

[1] Khodadadeh, S., Bölöni, L., and Shah, M. Unsupervised meta-learning for few-shot image classification. *Advances in neural information processing systems*, 32, 2019. [2] Antoniou, A. and Storkey, A. Assume, augment and learn: Unsupervised few-shot meta-learning via random labels and data augmentation. *arXiv preprint arXiv:1902.09884*, 2019.

- Related Works: Unsupervised Meta-learning in Computer Vision

- Unsupervised Meta-learning via Augmentation
 - UMTRA [1] / AAL [2] utilizes image augmentation to generate queries of randomly sampled N support set
 - **<u>AAL</u>**: Randomly sample $N \times K$ images, then make N-way K-shot support set by randomly assigning pseudo-labels

Algorithm 2 Unsupervised MAML Sampling Strategy

- 1: **Require:** Dataset \mathcal{D} with I number of data-points
- 2: Sample $N \times K$ data-points from \mathcal{D} , where N is the number of classes per set¹ and K is the number of samples per class $(N \times K) \leq I$
- 3: Build the support set S by assigning random labels to the previously $N \times K$ sampled data-points
- 4: Build the target (evaluation) set E by augmenting the support set S samples and keeping the labels identical
 5: Return S, E

Unsupervised Episode Generation of AAL [2]

- Motivation

- Closer Look at Episodic Learning Framework
 - Support set \rightarrow provides <u>basic information about the task</u> to be solved
 - Query set \rightarrow enables the model to <u>understand</u> how to solve the given task by making prediction on queries
- Existing Episode Generation methods
 - Supervised: Queries of support set have same labels \rightarrow Queries and Support set share similar semantics
 - UMTRA/AAL: By augmentation, make gueries having similar semantic with support set

Therefore, **queries should share similar semantics with the support set** → "Similarity" Condition on Queries

- Motivation

- Claim: Similarity Condition on Query set
 - Unsupervised Episode Generation: How to sample queries that share similar semantics with support set samples?
- Proposed Solution: Neighbors as Queries (NaQ)
 - Find similar nodes of each support set node as queries!
 - NaQ-Feat: use raw feature-level similarity / NaQ-Diff: use structural-level similarity measured by graph Diffusion [1]

NaQ: Use feature-level or structure-level similar nodes!

- Methodology Overview: NaQ-Feat

Methodology Overview of the NaQ-Feat

- Methodology Details

- Node-Node Similarity Calculation
 - **Per dataset**, we calculate node-node similarity matrix with raw node feature for sampling similar node as queries
 - As it can be done in pre-processing phase, it does not cause large computational cost
- Similarity Metric Choice
 - For bag-of-words raw node feature, we used cosine similarity
 - For continuous-type raw node feature (e.g. word embeddings), we used Euclidean distance

Raw Feature-based Node-Node Similarity Calculation

Similarity Calculation Process of the NaQ-Feat

- Methodology Details

- Support set Generation
 - Similar to UMTRA, we randomly sample N nodes from the entire graph, then regard each of them as distinct support set
 - To assure sampled *N* nodes (corresponding to '*N*-way') are distinguishable as much as possible, only 1-shot support set is generated regardless of the downstream task setting

Random Sampling Initial Support set $S_{\mathcal{T}_t}$

Support set Generation Process of the NaQ-Feat

- Methodology Details

- Query set Generation
 - For each support set node, we sample Top-*Q* similar node as queries
 - Sampled Q queries are given the same pseudo-label with corresponding support set node
 - <u>Support set node itself is excluded during the query sampling process</u>

Similarity-based Query Generation

Query set Generation Process of the NaQ-Feat

- An Extension to NaQ: NaQ-Diff
 - Motivation
 - <u>NaQ-Feat solely relies on raw node feature</u> *X*, without considering structural information of the graph
 - However, structural information can be crucial depending on the target domain
 - In citation networks, citation relationship between papers implies that they share similar semantics (related topics)
 - Therefore, considering structurally similar nodes as queries can be more beneficial in such cases

- Methodology Overview: NaQ-Diff

Methodology Overview of the NaQ-Diff

- Methodology Details

- Node-Node Similarity Calculation
 - NaQ-Diff differs from NaQ-Feat in only the similarity calculation process
 - Graph Diffusion [1] matrix defined as $\mathbf{S} = \sum_{k=0}^{\infty} \theta_k \mathbf{T}^k$ is leveraged for measuring structural similarity between nodes
 - θ_k : weighting coefficients, **T**: generalized transition matrix calculated with graph adjacency matrix and degree matrix
 - We interpret edge weights of diffusion matrix S as structural closeness between nodes

Similarity Calculation Process of the NaQ-Diff

- Model Training with Episodes generated by NaQ

- How to Train existing Graph Meta-learning Methods?
 - Training Episodes generated by NaQ follow the <u>same, common format</u> of the ordinary supervised episode generation
 - Hence, any of existing graph meta-learning methods can be trained in unsupervised manner by NaQ
- Notes
 - As NaQ generates training episodes with all nodes in a graph, existing graph meta-learning methods can fully utilize all nodes in a graph

 Algorithm 1 Training Graph Meta-learning methods with NAQ

 Require: Bundle of training episodes $\{\mathcal{T}_t\}_{t=1}^T$, Meta-learning model Meta $(\cdot; \theta)$, learning rate η .

 Randomly initialize model parameter θ

 for $t = 1, \dots, T$ do

 Step 1: Calculate loss \mathcal{L} by Meta $(\mathcal{T}_t; \theta)$

 Step 2: Update $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}$

 end for

return Meta($\mathcal{T}_t; \theta$)

Training Process of existing Graph Meta-learning methods with NaQ

- Theoretical Insights: Which similarity condition should NaQ satisfy?

- "Generalization Error" Perspective
 - Assumption: $y = f(x) + \epsilon$ ($\mathbb{E}[\epsilon] = 0$, $Var(\epsilon) = \sigma^2 < \infty$), error metric \mathcal{L} : Mean-Squared Error;

$$\mathbb{E}\left[\mathcal{L}\left(y', f_{S}(x')\right)\right] = \left(\mathbb{E}\left[f_{S}(x')\right] - f(x')\right)^{2} + \left(\mathbb{E}\left[f_{S}(x')^{2}\right] - \mathbb{E}\left[f_{S}(x')\right]^{2}\right) + \sigma^{2}$$

- S: training set, f_S : model trained on S, (x', y'): test set point, f: true, unknown estimation
- Closer Look at a Single Update Process of MAML [1]
 - Consider a **single** episode $\mathcal{T} = (S_{\mathcal{T}}, Q_{\mathcal{T}})$ with encoder f_{θ}
 - If we regard $S_{\mathcal{T}}$ as training set, $Q_{\mathcal{T}}$ as test set, We can interpret that <u>MAML's training process as "**Reducing Generalization Error**"</u> below [2] $\mathbb{E}[\mathcal{L}(y^{qry}, f_{\theta'}(x^{qry}))] = (\mathbb{E}[f_{\theta'}(x^{qry})] - f_{\mathcal{T}}(x^{qry}))^2 + (\mathbb{E}[f_{\theta'}(x^{qry})^2] - \mathbb{E}[f_{\theta'}(x^{qry})]^2) + \sigma^2 \cdots$ (2)
 - (x^{qry}, y^{qry}) : single query, f_T : unknown, true estimation on T
 - Hence, accurate calculation of Eq. (2) is crucial for better training, since it is used as Loss function [2]

[1] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In *Proceedings of the 34th International Conference on Machine Learning*. PMLR, 2017. [2] Khodadadeh, S., Bölöni, L., and Shah, M. Unsupervised meta-learning for few-shot image classification. *Advances in neural information processing systems*, 32, 2019.

- Theoretical Insights: Which similarity condition should NaQ satisfy?

- Analysis
 - For accurate estimation of Eq. (2), **true** label of query and corresponding support set should be the same
 - Otherwise, unexpected error δ s.t. $y^{qry} = f_T(x^{qry}) + \epsilon + \delta$ can occurs, which lead to "suboptimal solution"
 - Supervised episode generation naturally have $\delta = 0$
- Our Claim: "Class-level Similarity" Condition on Queries for Unsupervised Episode Generation
 - If we can sample "class-level similar" enough queries for each support set node, undesirable error δ will be small enough
 - Then, model f_{θ} can be trained successfully with loss function Eq. (2)
 - Therefore, "Class-level similarity" condition on gueries have to be satisfied by NaQ

$$\mathbb{E}[\mathcal{L}(y^{qry}, f_{\theta'}(x^{qry}))] = \left(\mathbb{E}[f_{\theta'}(x^{qry})] - f_{\mathcal{T}}(x^{qry})\right)^2 + \left(\mathbb{E}[f_{\theta'}(x^{qry})^2] - \mathbb{E}[f_{\theta'}(x^{qry})]^2\right) + \sigma^2 \quad \dots (2)$$

- Empirical Analysis: NaQ satisfies Class-level Similarity Condition

- Empirical Analysis
 - We measured averaged class-level similarity between each node and top-10 similar nodes found by NaQ
 - Class-level similarity between two nodes: similarity between their class centroids
 - In most of cases, NaQ-Feat and NaQ-Diff can discover high enough (~80%) class-level similar queries in real-world datasets

02 Cl

- Empirical Analysis: NaQ satisfies Class-level Similarity Condition

- Empirical Analysis
 - We measured averaged class-level similarity between each node and top-10 similar nodes found by NaQ
 - Class-level similarity between two nodes: similarity between their class centroids

Amazon-

- Summary Q-Feat and NaQ-Diff can discover high enough (~80%) class-level similar queries in real-world datasets
 - 1) NaQ should find "Class-level Similar Queries" to enable unsupervised graph meta-learning
 - 2) NaQ can discover Class-level Similar Queries in real-world datasets

Thus, NaQ can work within episodic learning framework!

Clothing Electronics Averaged class-level similarity between each node and top-10 similar nodes found via NaO-Feat and NaO-Diff

Amazon-

Cora-Full

DBLP

- Experimental Settings: Evaluation Datasets

- Evaluation Datasets
 - Total five benchmark datasets were used in evaluation
 - Two product networks (Amazon-Clothing/Electronics) and Three citation networks (Cora-Full, DBLP, ogbn-arxiv) were used
 - 'Class split' means the number of distinct classes used to make episodes in training (supervised only), validation, and testing phase
- Details
 - Amazon-Clothing: edges are 'also-viewed' relationships between products; node class is product category
 - Amazon-Electronics: edges are 'bought-together' relationships between products; node class is product category
 - Node class of Cora-Full: paper topic / DBLP: venue where the paper is published / ogbn-arxiv: subject area in CS papers

Dataset	# Nodes	# Edges	# Features	# Labels	Class split	Hom. ratio
Amazon-Clothing	$24,\!919$	$91,\!680$	9,034	77	40/17/20	0.62
Amazon-Electronics	$42,\!318$	$43,\!556$	$8,\!669$	167	90/37/40	0.38
Cora-Full	$19,\!793$	$65,\!311$	8,710	70	25/20/25	0.59
DBLP	$40,\!672$	$288,\!270$	$7,\!202$	137	80/27/30	0.29
ogbn-arxiv	$169,\!343$	$1,\!166,\!243$	128	40	15/10/15	0.43

- Experimental Settings: Baselines and their Settings

- Compared Baselines
 - Total ten baseline methods were used in evaluation
 - Used six graph meta-learning baselines: MAML, ProtoNet, G-Meta, TENT, GLITTER, and COSMIC
 - MAML, ProtoNet: Representative meta-learning methods
 - G-Meta: Representative Graph meta-learning method
 - TENT, GLITTER, COSMIC: Recent (2022~) Baselines
 - Used three recent (2022~) GCL baselines: BGRL, SUGRL, and AFGRL for the comparison with TLP
 - Lastly, graph transformer-based, unsupervised baseline VNT was used

- Results: Overall Performance Analysis

	Results in Product Networks											
Dataset		Ama	zon-Clothin	g				Amaz	on- Electron	ics		
Setting	5 v	vay	10	way	Avg.	5 v	vay	10	way	20	way	Avg.
Baselines	1 shot	5 shot	1 shot	5 shot	Rank	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	Rank
MAML (Sup.)	76.13±1.17	84.28±0.87	63.77±0.83	76.95±0.65	10.25	65.58±1.26	78.55±0.96	57.31±0.87	67.56±0.73	46.37±0.61	60.04 ± 0.52	9.33
ProtoNet (Sup.)	75.52±1.12	89.76±0.70	65.50 ± 0.82	82.23±0.62	7.25	69.48±1.22	84.81 ± 0.82	57.67±0.85	75.79 ± 0.67	48.41±0.57	67.31±0.47	5.83
TENT (Sup.)	79.46±1.10	89.61±0.70	69.72±0.80	84.74 ± 0.59	5.25	72.31±1.14	85.25 ± 0.81	62.13±0.83	77.32±0.67	52.45±0.60	69.39 ± 0.50	4.00
G-Meta (Sup.)	78.67±1.05	88.79 ± 0.76	65.30±0.79	80.97 ± 0.59	7.75	72.26±1.16	84.44 ± 0.83	61.32 ± 0.86	74.92 ± 0.71	50.39±0.59	65.73 ± 0.48	5.67
GLITTER (Sup.)	75.73±1.10	89.18 ± 0.74	64.30±0.79	77.73 ± 0.68	9.00	66.91±1.22	82.59±0.83	57.12±0.88	76.26±0.67	49.23±0.57	61.77 ± 0.52	7.00
COSMIC (Sup.)	82.24±0.99	91.22±0.73	74.44 ± 0.75	81.58 ± 0.63	3.75	72.61±1.05	86.92±0.76	65.24 ± 0.82	78.00 ± 0.64	58.71±0.57	70.29 ± 0.44	3.00
TLP-BGRL	81.42±1.05	90.53±0.71	72.05±0.86	83.64±0.63	4.25	64.20±1.10	81.72±0.85	53.16±0.82	73.70±0.66	44.57 ± 0.54	65.13±0.47	8.67
TLP-SUGRL	63.32±1.19	86.35±0.78	54.81±0.77	73.10±0.63	11.50	54.76±1.06	78.12±0.92	46.51 ± 0.80	68.41±0.71	36.08 ± 0.52	57.78±0.49	11.67
TLP-AFGRL	78.12±1.13	89.82±0.73	71.12 ± 0.81	83.88 ± 0.63	5.25	59.07±1.07	81.15 ± 0.85	50.71±0.85	73.87 ± 0.66	43.10 ± 0.56	65.44 ± 0.48	9.00
VNT	65.09±1.23	85.86±0.76	62.43±0.81	80.87±0.63	10.50	56.69±1.22	78.02±0.97	49.98±0.83	70.51±0.73	42.10±0.53	60.99 ± 0.50	10.83
NAQ-FEAT-Best (Ours)	86.58±0.96	92.27±0.67	79.55±0.78	86.10±0.60	1.00	76.46±1.11	88.72±0.73	69.59±0.86	81.44±0.61	61.05±0.59	74.60±0.47	1.00
NAQ-DIFF-Best (Ours)	84.40 ± 1.01	91.72±0.69	73.39±0.79	84.82 ± 0.58	2.25	74.16 ± 1.08	$\underline{87.09} \pm 0.75}$	$\underline{65.95}_{\pm 0.81}$	79.13 ± 0.60	60.40 ± 0.59	$\underline{73.75} \pm 0.42}$	2.00

Results in Large-scale dataset ogbn-arxiv

Dataset	ogbn-arxiv					
Setting	5 v	vay	10 -	way		
Baselines	1 shot	5 shot	1 shot	5 shot		
MAML (Sup.)	40.61±0.89	58.75±0.89	27.32±0.55	43.87±0.56		
ProtoNet (Sup.)	43.34±1.01	58.30±0.95	28.17 ± 0.60	46.11 ± 0.60		
TENT (Sup.)	48.06±0.97	63.45±0.88	33.85±0.65	48.14 ± 0.59		
G-Meta (Sup.)	41.06±0.87	59.43±0.87	27.20±0.53	45.04 ± 0.53		
GLITTER (Sup.)	35.64±0.97	34.51±0.85	20.95±0.50	21.84 ± 0.47		
COSMIC (Sup.)	50.32±0.95	63.54 ± 0.80	38.41 ± 0.62	49.31 ± 0.51		
TLP-BGRL	49.88±1.01	69.10 ± 0.82	36.40±0.62	<u>56.15±0.54</u>		
TLP-SUGRL	49.25±0.97	62.15 ± 0.92	32.87 ± 0.61	45.76 ± 0.60		
TLP-AFGRL	OOM	OOM	OOM	OOM		
VNT	OOM	OOM	OOM	OOM		
NAQ-FEAT (Ours)	54.09±1.03	69.94±0.84	41.61±0.68	58.18±0.59		
NAQ-DIFF (Ours)	51.45 ± 1.04	66.73±0.89	$\underline{39.27} \pm 0.67}$	55.93±0.56		

Results in Citation Networks

Dataset	Cora-full						DBLP							
Setting	5 v	vay	10	way	20	way	Avg.	5 v	vay	10	way	20	way	Avg.
Baselines	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	Rank	1 shot	5 shot	1 shot	5 shot	1 shot	5 shot	Rank
MAML (Sup.)	59.28±1.21	70.30±0.99	44.15 ± 0.81	57.59±0.66	30.99 ± 0.43	46.80±0.38	9.67	72.48±1.22	80.30±1.03	60.08±0.90	69.85±0.76	46.12±0.53	57.30±0.48	8.50
ProtoNet (Sup.)	58.61±1.21	73.91±0.93	44.54±0.79	62.15 ± 0.64	32.10 ± 0.42	50.87 ± 0.40	7.67	73.80±1.20	81.33 ± 1.00	61.88±0.86	73.02±0.74	48.70 ± 0.52	62.42 ± 0.45	4.33
TENT (Sup.)	61.30±1.18	77.32±0.81	47.30 ± 0.80	66.40 ± 0.62	36.40 ± 0.45	55.77±0.39	4.50	74.01±1.20	82.54 ± 1.00	62.95±0.85	73.26±0.77	49.67 ± 0.53	61.87 ± 0.47	<u>2.67</u>
G-Meta (Sup.)	59.88±1.26	75.36±0.86	44.34 ± 0.80	59.59±0.66	33.25 ± 0.42	49.00±0.39	7.50	74.64 ± 1.20	79.96±1.08	61.50±0.88	70.33±0.77	46.07 ± 0.52	58.38±0.47	7.00
GLITTER (Sup.)	55.17±1.18	69.33±0.96	42.81±0.81	52.76±0.68	30.70 ± 0.41	40.82 ± 0.41	11.50	73.50±1.25	75.90±1.19	OOT	OOT	OOM	OOM	9.50
COSMIC (Sup.)	62.24±1.15	73.85±0.83	47.85±0.77	59.11 ± 0.60	42.25±0.43	47.28±0.38	6.33	72.34±1.18	80.83±1.03	59.21±0.80	70.67±0.71	49.52 ± 0.51	$59.01{\scriptstyle \pm 0.42}$	7.50
TLP-BGRL	62.59±1.13	78.80±0.80	49.43±0.79	67.18 ± 0.61	37.63±0.44	56.26±0.39	3.17	73.92±1.19	82.42±0.95	60.16±0.87	72.13±0.74	47.00±0.53	60.57±0.45	4.83
TLP-SUGRL	55.42±1.08	76.01±0.84	44.66±0.74	63.69 ± 0.62	34.23 ± 0.41	52.76±0.40	6.33	71.27±1.15	81.36±1.02	58.85±0.81	71.02±0.78	45.71±0.49	59.77 ± 0.45	8.17
TLP-AFGRL	55.24±1.02	75.92±0.83	44.08±0.70	64.42 ± 0.62	33.88 ± 0.41	53.83±0.39	7.17	71.18±1.17	82.03±0.94	58.70±0.86	71.14±0.75	45.99±0.53	60.31±0.45	7.83
VNT	47.53±1.14	69.94±0.89	37.79±0.69	57.71±0.65	28.78 ± 0.40	46.86 ± 0.40	11.17	58.21±1.16	76.25±1.05	48.75±0.81	66.37±0.77	40.10 ± 0.49	55.15±0.46	11.17
NAQ-FEAT-Best (Ours)	66.30±1.15	80.09±0.79	52.23±0.73	68.87±0.60	44.13±0.47	60.94±0.36	1.33	73.55±1.16	82.36±0.94	60.70±0.87	72.36±0.73	50.42±0.52	64.90±0.43	3.67
NAQ-DIFF-Best (Ours)	<u>66.26±1.15</u>	$\underline{80.07 \pm_{0.79}}$	$\underline{52.17} \underline{\pm}_{0.74}$	69.34±0.63	$\underline{44.12} \underline{\pm}_{0.47}$	60.97±0.37	<u>1.67</u>	76.58±1.18	82.86±0.95	64.31±0.87	74.06±0.75	51.62±0.54	$\underline{64.78} \underline{\pm}_{0.44}$	1.17

Across all of the settings, proposed NaQ can outperform all the baselines

- Results: Model-agnostic Property of NaQ

Generally, proposed NaQ can retain or even improve the performance of graph meta-learning methods

(Note: Supervised methods had access to all, clean labeled samples of entire base classes)

- Results: t-SNE Plot of tail-class node embeddings

t-SNE plot of top-10 tail-class node embeddings in Amazon-Electronics Dataset (Product Network)

t-SNE plot of top-10 tail-class node embeddings in Cora-Full Dataset (Citation Network)

NaQ can be more robust to the Class Imbalance in the graph than GCL methods

- Additional Empirical Results & Analysis

- Robustness against the Class Imbalance of Graph Meta-learning methods (pp. 40 and 41 in Appendix)
 - NaQ can be robust to the class imbalance <u>since class-level similar queries of tail-class nodes can provide helpful information</u> for learning tail-class node embeddings
 - Downstream task format information obtained by episodic learning is beneficial for attaining robustness
- Impact of Similarity Metric Choice on NaQ-Feat (pp. 42 in Appendix)
 - In summary, proper metric choice is essential for NaQ-Feat
- Impact of the number of queries Q (pp. 43 in Appendix)
 - In summary, when NaQ can find highly class-level similar queries, increasing Q can lead to the better performance
- Regarding Query-overlap Problem of NaQ (pp. 44 in Appendix)
 - Generally, <u>query overlap among distinct query set is negligible for NaQ</u>
 - For some exceptional cases, dropping such overlaps can be a promising solution

Conclusion

- Summary of the dissertation
 - Problems of Current Approaches
 - Existing **graph meta-learning methods cannot fully utilize all nodes in the graph**, as they solely rely on the given label information
 - Naïve application of unsupervised GCL methods on FSNC is vulnerable to Class Imbalance since there is no information on downstream task format, which also leads to the low generalizability [1] of the trained model when solving downstream tasks
 - Solution
 - Proposed NaQ enables the unsupervised graph meta-learning, thus **downstream task format-aware training** with all nodes in the graph is allowed
 - By sampling queries based on pre-calculated node-node similarity, **NaQ can successfully generate training episode** that can be applied to existing graph meta-learning methods for their unsupervised training
 - Extensive experiments and analyses demonstrate effectiveness of our NaQ

Conclusion

- Limitation & Future Work
 - Computational Issue of NaQ-Diff
 - Current technical issue on sparse matrix multiplication, even truncated approximation of graph Diffusion cannot be computed for datasets having a large number of edges
 - This problem hinders the applicability of NaQ-Diff to large real-world datasets
 - Therefore, devising an unsupervised episode generation method that can fully leverage the structural information while reducing computational costs will be promising future work
 - Naïve Support set Generation False-negative Problem
 - NaQ depends on naïve random sampling for support set generation
 - For this reason, there is a possibility that nodes having the same label can be assigned to a distinct support set (False-negative Problem), although NaQ tries to avoid such problem by generating only 1-shot support set
 - Hence, developing a more sophisticated algorithm that can alleviate the false-negative problem while generate a *K*-shot ($K \gg 1$) support set will be valuable future work

Thank you!

Reference

- Full Paper: https://arxiv.org/pdf/2306.15217 / Official Source Code: https://github.com/JhngJng/NaQ-PyTorch
- Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In *Proceedings of the 34th International Conference on Machine Learning*. PMLR, 2017.
- Snell, J., Swersky, K., and Zemel, R. Prototypical networks for few-shot learning. Advances in Neural Information Processing Systems, 30, 2017.
- Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K. and Wierstra, D. Matching networks for one shot learning. Advances in neural information processing systems, 29, 2016.
- Kim, S., Lee, J., Lee, N., Kim, W., Choi, S., and Park, C. Task-equivariant graph few-shot learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023.
- Wang, S., Dong, Y., Ding, K., Chen, C. and Li, J. Few-shot node classification with extremely weak supervision. In Proceedings of the 16th International Conference on Web Search and Data Mining, 2023.
- Tan, Z., Wang, S., Ding, K., Li, J., and Liu, H. Transductive linear probing: A novel framework for few-shot node classification. In *Learning on Graphs Conference*, 2022.
- Lu, Y., Jiang, X., Fang, Y., and Shi, C. Learning to pre-train graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4276-4284, 2021.
- Khodadadeh, S., Bölöni, L., and Shah, M. Unsupervised meta-learning for few-shot image classification. Advances in neural information processing systems, 32, 2019.
- Antoniou, A. and Storkey, A. Assume, augment and learn: Unsupervised few-shot meta-learning via random labels and data augmentation. arXiv preprint arXiv:1902.09884, 2019.
- Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations*, 2017.
- Huang, K. and Zitnik, M. Graph meta learning via local subgraphs. Advances in Neural Information Processing Systems, 33, 2020.
- Wang, S., Ding, K., Zhang, C., Chen, C., and Li, J. Task-adaptive few-shot node classification. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2022.
- Gasteiger, J., Weißenberger, S., and Günnemann, S. Diffusion improves graph learning. *Advances in Neural Information Processing Systems*, 32, 2019.

- Analysis: Why NaQ can attain robustness against the Class Imbalance?

- Supervised Graph Meta-learning
 - In a single episode, all classes in base classes are treated equally regardless of Imbalance
 - With an aid of task format information provided by episodic learning, supervised graph meta-learning can attain robustness
- Unsupervised Graph Meta-learning with NaQ
 - NaQ still can sample "class-level similar" queries to the support set nodes from tail classes
 - NaQ-Feat can still find high enough similar queries in product networks, while NaQ-Diff find high enough similar queries in citation networks
 - Such class-level similar queries can provide useful information for learning tail-class embeddings
 - Also, with task format information provided by episodic learning, NaQ can attain robustness against Class Imbalance

]	Datasets	Amazon-	Clothing	Amazon-Electronics		Cora-Full		DBLP	
ta	top- $p\%$ ail classes	NAQ-FEAT	NAQ-DIFF	NAQ-FEAT	NAQ-DIFF	NAQ-FEAT	NAQ-DIFF	NAQ-FEAT	NAQ-DIFF
	10%	$\sim \! 78.7\%$	$\sim \! 75.2\%$	$\sim 72.3\%$	$\sim \!\! 48.2\%$	${\sim}69.7\%$	${\sim}77.9\%$	$\sim\!\!66.6\%$	$\sim \! 75.1\%$
	20%	$\sim\!\!81.3\%$	${\sim}78.2\%$	$\sim \! 74.1\%$	${\sim}51.6\%$	$\sim 70.7\%$	${\sim}77.6\%$	${\sim}68.3\%$	${\sim}78.0\%$
	50%	$\sim\!\!81.7\%$	${\sim}80.7\%$	$\sim 77.8\%$	${\sim}53.0\%$	${\sim}74.6\%$	${\sim}81.8\%$	$\sim \! 70.4\%$	${\sim}80.9\%$
	80%	$\sim\!\!80.8\%$	${\sim}79.0\%$	$\sim 78.9\%$	${\sim}52.5\%$	$\sim \! 77.8\%$	${\sim}84.6\%$	${\sim}71.9\%$	$\sim\!\!82.1\%$
	100%	$\sim\!\!81.6\%$	${\sim}78.8\%$	$\sim\!\!81.9\%$	$\sim 52.7\%$	$\sim 79.8\%$	$\sim\!86.0\%$	$\sim\!73.5\%$	$\sim 83.0\%$

Averaged class-level similarity between each node from top-p% tail classes and top-10 similar nodes found by NaQ-Feat and NaQ-Diff

- Analysis: Role of the Episodic Learning Framework for attaining robustness against the Class Imbalance

- Is Episodic Learning really beneficial for the Class Imbalance?
 - To demonstrate the effectiveness of downstream task 'format' information provided by episodic learning, we observed the change in tail-class node embedding quality when *N*-way becomes larger
 - In Amazon-Electronics, NaQ-Diff have difficulty in finding class-level similar queries
 - Surprisingly, training with more challenging episodes (20-way training episodes) lead much better tail-class node embedding quality for NaQ-Diff

Averaged class-level similarity between each node and top-10 similar nodes found via NaQ

- Therefore, we can conclude that Episodic Learning does attribute to attain robustness against the Class Imbalance

- Ablation Study: Impact of Similarity Metric Choice on NaQ-Feat

- Similarity Metric Choice of NaQ-Feat
 - Similarity metric is an important factor for NaQ-Feat, as inappropriate choice can lead to wrong selection of queries
 - For datasets having bag-of-words features, Euclidean distance is **inappropriate so thatboth class-level similarity of queries and FSNC performance are degraded**
 - In case of Jaccard similarity, as it is similar to cosine similarity when measuring similarities in bag-of-words data, NaQ-Feat with both similarity metric shows similar FSNC performance
 - However, Jaccard similarity is cannot be computed with continuous features \rightarrow cosine similarity is more general
 - In summary, choosing appropriate similarity metric is important for NaQ-Feat

Datasets	Avg. Class-level sim.	Avg. Class-level sim.
(Feature type: bag-of-words)	(Cosine sim.)	(Neg. Euclidean dist.)
Amazon-Clothing	$\sim 81.6\%$	$\sim 61.0\%$
Amazon-Electronics	$\sim 81.9\%$	$\sim 64.6\%$
Cora-Full	$\sim 79.8\%$	$\sim 40.4\%$
DBLP	$\sim 73.5\%$	$\sim 19.1\%$

Impact of Similarity Metric Choice on class-level similarity of top-10 similar nodes found by NaQ-Feat

Datasets	FSNC Accuracy	FSNC Accuracy	FSNC Accuracy
(Feature type: bag-of-words)	(Cosine sim.)	(Jaccard sim.)	(Neg. Euclidean dist.)
Amazon-Clothing	83.77%	83.35%	80.83%
Amazon-Electronics	76.46%	76.63%	70.68%
Cora-Full	64.20%	63.53%	45.60%
DBLP	71.38%	72.68%	67.53%

Impact of Similarity Metric Choice on FSNC performance of NaQ-Feat (5-way 1-shot, base-model: ProtoNet)

- Hyperparameter Sensitivity Analysis: Impact of number of queries Q

- Amazon-Clothing
 - Both NaQ-Feat and NaQ-Diff can discover highly class-level similar queries \rightarrow both show increasing tendency as Q increases
- Amazon-Electronics
 - NaQ-Feat shows increasing tendency as in Amazon-Clothing, due to the same reason
 - NaQ-Feat shows decreasing performance after Q = 5, due to relatively low class-level similarity of discovered queries
- DBLP
 - NaQ-Diff shows increasing tendency as Q increases, while NaQ-Feat shows consistent performance by number of queries
- Summary
 - Like the case of NaQ-Diff in Amazon-Electronics, proper choice of Q is essential
 - Otherwise, label noise that can hinder model training can be introduced
 - As NaQ-Diff can find more class-level similar queries than NaQ-Feat in DBLP,
 motivation of utilizing structural neighbors as queries in such datasets is validated

- Analysis: Regarding the Query-overlap Problem of NaQ

Datasets	Amazon-Clothing		Amazon-Electronics		Cora	-Full	DB	LP
N-way	NAQ-FEAT	NAQ-DIFF	NAQ-FEAT	NAQ-DIFF	NAQ-FEAT	NAQ-DIFF	NAQ-FEAT	NAQ-DIFF
5	0.1573%	0.9978%	0.0871%	11.1715%	0.2206%	0.4743%	0.1826%	0.0605%
10	0.3855%	2.0769%	0.2118%	16.9618%	0.5101%	1.0138%	0.4108%	0.1389%
20	0.7834%	4.0358%	0.4457%	21.4706%	1.0221%	2.0151%	0.8559%	0.3054%

Averaged query overlap ratio within 16,000 training episodes generated by NaQ

- Query-overlap Problem
 - Situation where sampled query sets corresponding to each distinct support set have intersection can happen for NaQ, which might be problematic during the model training
 - In real-world datasets, query overlap is generally rare, as shown in the table above
- Impact of Dropping Query Overlaps
 - When query overlap is significant (NaQ-Diff in Amazon-Electronics), dropping query overlaps have shown remarkable effect
 - However, when query overlap is negligible, dropping queries shows no dramatic improvements on the performance
 - In summary, **query overlap is generally negligible in real-world datasets**, and **dropping query overlaps can be a promising solution for some exceptional cases**

Amazon-Electronics						
Sotting	NAQ-DIFF	NAQ-DIFF				
Setting	(Original ver.)	(Overlap drop ver.)				
5-way 1-shot	$68.56{\pm}1.18\%$	$69.77{\pm}1.17\%$				
10-way 1 -shot	$59.46{\pm}0.86\%$	$61.98{\pm}0.86\%$				
20-way 1 -shot	$49.24{\pm}0.59\%$	$52.15{\pm}0.60\%$				

Impact of dropping overlapping queries on NaQ-Diff (When query overlap is significant)

Cora-Full							
Sotting	NAQ-FEAT	NAQ-FEAT					
betting	(Original ver.)	(Overlap drop ver.)					
5-way 1-shot	$64.20{\pm}1.11\%$	$63.37{\pm}1.08\%$					
10-way 1-shot	$51.78 {\pm} 0.75\%$	$52.32{\pm}0.75\%$					
20-way 1-shot	$40.11{\pm}0.45\%$	$40.27{\pm}0.48\%$					

Impact of dropping overlapping queries on NaQ-Feat (When query overlap is negligible)