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BACKGROUND MOLECULAR RELATIONAL LEARNING

Molecular Relational Learning
Learning the interaction behavior between a pair of molecules

Examples
- Predicting optical properties when a Chromophore and Solvent react
- Predicting solubility when a solute and solvent react
- Predicting side effects when taking two types of drugs simultaneously
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BACKGROUND FUNCTIONAL GROUP

Functional Group
Specific atomic groups that play an important role in determining 
the chemical reactivity of organic compounds

Compounds with the same functional group generally have similar 
properties and undergo similar chemical reactions

GlucoseAlcohol

Examples
The hydroxyl group structure has the characteristic of increasing the pol
arity of the molecule

Hence, it is important to consider functional group for molecular relational learning
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BACKGROUND FUNCTIONAL GROUP

Functional Group
Specific atomic groups that play an important role in determining 
the chemical reactivity of organic compounds

Compounds with the same functional group generally have similar 
properties and undergo similar chemical reactions

Molecule can be represented as a graph
Functional group can be represented as a subgraphFunctional�Group�1

Functional�Group�2

Recently, information theory-based approaches have been proposed to detect important subgraph
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BACKGROUND INFORMATION BOTTLENECK

Information Bottleneck Theory
A theoretical approach to trade-off between information compression
and preservation

X T Y
Compression Prediction

Bottleneck 
Variable

Input
Variable

Output
Variable

Maximize MI between T and Y
à T should contain as much information about Y as possible
à Prediction

Minimize MI between X and T
à T should contain minimal information about X
à Compression
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BACKGROUND GRAPH INFORMATION BOTTLENECK

Information Bottleneck Graph
Subgraph that maximally preserves the property of the original graph
à Motif in ordinary graphs
à Functional group in molecules

𝓖 𝓖𝐈𝐁 Y
Compression Prediction

Bottleneck 
Graph

Input
Graph

Target
Variable

Functional Group of Molecule
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BACKGROUND GRAPH INFORMATION BOTTLENECK

Extract a subgraph in terms of edges
Model an edge based Bernoulli distribution to perform graph compression

Proposed variational upperbound

Model objective

Miao, Siqi, Mia Liu, and Pan Li. "Interpretable and generalizable graph learning via stochastic attention mechanism." ICML 2022
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BACKGROUND GRAPH INFORMATION BOTTLENECK

Extract a subgraph in terms of nodes
Inject noise into node embeddings to perform graph compression

Yu, Junchi, Jie Cao, and Ran He. "Improving subgraph recognition with variational graph information bottleneck.” CVPR 2022.

Can Information bottleneck theory also benefits molecular relational learning?
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MOTIVATION

Functional Group
Specific atomic groups that play an important role in determining 
the chemical reactivity of organic compounds

Compounds with the same functional group generally have similar 
properties and undergo similar chemical reactions

On the other hand, the role of functional group varies depending 
on which solvent the solute reacts with!C-CF3 Structure Oil

Water

Decrease Solubility

Unknown Examples: C-CF3 structure in molecules

It is important to consider the paired solvent when detecting the important substructure from solute
à Existing approaches for information bottleneck cannot capture such a prior knowledge
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

Conditional Graph Information Bottleneck
Consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1 (Solute)

Graph Information Bottleneck

Conditional Graph Information Bottleneck
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

Proof of Lemma 3.3

Assuming that  𝒢!, 𝒢"#$! , 𝒢%!, 𝒢&, and Y satisfy the Markov condition (Y, 𝒢%!, 𝒢&) → 𝒢! → 𝒢"#$! ,
we have the following inequality due to data processing inequality:

𝐼 𝒢!; 𝒢"#$! 𝒢& = 𝐼 𝒢"#$! ; 𝒢!, 𝒢& − 𝐼 𝒢"#$! ; 𝒢&

≥ 𝐼 𝒢"#$! ; Y, 𝒢%!, 𝒢& − 𝐼 𝒢"#$! ; 𝒢&

= 𝐼 𝒢"#$! ; 𝒢%!, 𝒢& + 𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢& − 𝐼 𝒢"#$! ; 𝒢&

= 𝐼 𝒢"#$! ; 𝒢%!, 𝒢& + 𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢&

Suppose that 𝒢%! and Y, 𝒢%! and 𝒢&, and joint random variable (𝒢%!, 𝒢&) and Y are independent respectively.
Then, for 𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢& we have:

𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢& = 𝐻 𝑌 𝒢%!, 𝒢& − 𝐻 𝑌 𝒢%!, 𝒢"#$! , 𝒢&

≥ 𝐻 𝑌 𝒢& − 𝐻 𝑌 𝒢"#$! , 𝒢&

= 𝐼(𝑌; 𝒢"#$! |𝒢&)

(1)

(2)

By plugging Equation (2) into Equation (1), we have:

𝐼 𝒢!; 𝒢"#$! 𝒢& ≥ 𝐼 𝒢"#$! ; 𝒢%!, 𝒢& + 𝐼(𝑌; 𝒢"#$! |𝒢&)

By minimizing CGIB objective function, 
the model learns a CIB-Graph with the smallest mutual information with task-irrelevant noise
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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Overall procedure
Decompose the conditional MI based on the chain rule of MI, 
and then derive the upper bound of the decomposed terms
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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∵ Chain rule of mutual information

Direct calculation of mutual information is intractable;
Instead, we minimize the upper bound

Proof. By the definition of mutual information and introducing variational approximation 𝑝'(𝑌|𝒢"#$! , 𝒢&) of 
intractable distribution 𝑝(𝑌|𝒢"#$! , 𝒢&), we have:

𝐼 𝑌; 𝒢"#$! , 𝒢& = 𝔼(, 𝒢!"#$ , 𝒢% log
+ 𝑌 𝒢"#$! , 𝒢&

+ (

= 𝔼(, 𝒢!"#$ , 𝒢% log
+& 𝑌 𝒢"#$! , 𝒢&

+ ( + 𝔼 𝒢!"#$ , 𝒢%[𝑝 𝑌 𝒢"#$! , 𝒢& ||𝑝' 𝑌 𝒢"#$! , 𝒢& ]

≥ 𝔼(, 𝒢!"#$ , 𝒢% log
+& 𝑌 𝒢"#$! , 𝒢&

+ (

= 𝔼(, 𝒢!"#$ , 𝒢% log 𝑝' 𝑌 𝒢"#$! , 𝒢& + 𝐻(𝑌)

∵ Non-negativity of KL divergence

Proposition. (Upper bound of −I(𝑌; 𝒢"#$! , 𝒢&)) Given a pair of graph (𝒢!, 𝒢&), its label information 𝑌, 
and the learned CIB-graph 𝒢"#$! , we have:

−I(𝑌; 𝒢"#$! , 𝒢&) ≤ 𝔼(, 𝒢!"#$ , 𝒢% log 𝑝' 𝑌 𝒢"#$! , 𝒢&

where 𝑝'(𝑌|𝒢"#$! , 𝒢&) is variational approximation of 𝑝(𝑌|𝒢"#$! , 𝒢&).
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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∵ Chain rule of mutual information

Direct calculation of mutual information is intractable;
Instead, we minimize the upper bound

Implementation
- Consider 𝑝:(𝑌|𝒢;<=> , 𝒢?) as a predictor parameterezied by θ, which outputs the model 
prediction 𝑌 based on the input pair (𝒢;<=> , 𝒢?)
- The upper bound is minimized by minimizing the prediction loss ℒ@ABC(Y, 𝒢;<=> , 𝒢?)

Proposition. (Upper bound of −I(𝑌; 𝒢"#$! , 𝒢&)) Given a pair of graph (𝒢!, 𝒢&), its label information 𝑌, 
and the learned CIB-graph 𝒢"#$! , we have:

−I(𝑌; 𝒢"#$! , 𝒢&) ≤ 𝔼(, 𝒢!"#$ , 𝒢% log 𝑝' 𝑌 𝒢"#$! , 𝒢&

where 𝑝'(𝑌|𝒢"#$! , 𝒢&) is variational approximation of 𝑝(𝑌|𝒢"#$! , 𝒢&).
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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∵ Chain rule of mutual information

Following VIB, we treat 𝑟 Y as fixed spherical Gaussian, 

𝐼(𝑌; 𝒢&) ≤ 𝔼𝒢% 𝐾𝐿(𝑝,(𝑌|𝒢&)||𝑟 𝑌 )

where 𝑟 𝑌 ~𝑁(Y|0, 1)

The 2nd term is empirically found to be not helpful

Increasing the contribution of this term deteriorates the model performance

We remove the term 𝐼(Y, 𝒢?) from the model
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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ℒK<!: Compression through Noise injection
à Injecting noise into unimportant nodes

ℒK<": Solute Prediction
à Encourage 𝒢;<=> to contain as much information about 𝒢? as possible
à The term that arises from the Conditional Mutual Information
à Key to the success of CGIB! Enables the conditional information compression of CGIB

∵ Chain rule of mutual information

ℒ!"! ℒ!""
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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∵ Chain rule of mutual information

ℒ!"!

Compression through Noise Injection
* Injecting noise into unimportant nodes

HL> : Representation of node i of 𝒢> that contains information about both 𝒢> , 𝒢?

𝑝M = MLP(HL>) : Important of node i of 𝒢>

TL> = λLHL> + 1 − λL ε where λL~Bernoulli(pL) and ε~N(µN!, σN!
? )

Intuition) Unimportant nodes would not affect the model performance even if they are 
replaced with noise

Upper bound of I 𝒢"#$! ; 𝒢!, 𝒢&

I 𝒢"#$! ; 𝒢!, 𝒢& ≤ 𝔼 𝒢$,𝒢% − !
& log 𝐴 +

!
&-$ 𝐴 +

!
&-$ 𝐵

&

≔ ℒ./$ 𝒢"#$! , 𝒢!, 𝒢&

where 𝐴 = ∑01!-$ (1 − 𝜆0)& and 𝐵 =
∑'($
)$ 3'(5'

$67*$)
%

9*$
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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Upper bound of I 𝒢"#$! ; 𝒢!, 𝒢&

I 𝒢"#$! ; 𝒢!, 𝒢& ≤ 𝔼 𝒢$,𝒢% − !
&
log 𝐴 + !

&-$
𝐴 + !

&-$
𝐵&

≔ ℒ./$ 𝒢"#$! , 𝒢!, 𝒢&

where 𝐴 = ∑01!-$ (1 − 𝜆0)& and 𝐵 =
∑'($
)$ 3'(5'

$67*$)
%

9*$

Proof. Given the perturbed graph 𝒢"#$! and its representation 𝑧𝒢!"#$ , we assume there is no information loss during the 

readout process, i.e., I 𝑧𝒢!"#$ ; 𝒢!, 𝒢& = I 𝒢"#$! ; 𝒢!, 𝒢& .

I 𝑧𝒢!"#$ ; 𝒢!, 𝒢& = 𝔼:𝒢!"#$ , 𝒢$,𝒢% − log
+, (:𝒢!"#$ |𝒢$,𝒢%)

+(:𝒢!"#$ )

= 𝔼 𝒢$,𝒢% − log
+, (:𝒢!"#$ |𝒢$,𝒢%)

<(:𝒢!"#$ ) − 𝔼:𝒢!"#$ , 𝒢$,𝒢% 𝐾𝐿(𝑝 𝑧𝒢!"#$ ||𝑞 𝑧𝒢!"#$ )

≤ 𝔼:𝒢!"#$ , 𝒢$,𝒢% 𝐾𝐿(𝑝= (𝑧𝒢!"#$ |𝒢!, 𝒢&)||𝑞 𝑧𝒢!"#$ ) ∵ Non-negativity of KL divergence

Assuming that 𝑞 𝑧𝒢!"#$ is Gaussian distribution. 
The noise 𝜀~𝑁(𝜇𝐇$ , 𝜎𝐇$) is sampled from Gaussian distribution where 𝜇𝐇$ and 𝜎𝐇$ are mean and variance of 𝐇!.

Thus, 𝑞 𝑧𝒢!"#$ = 𝑁(𝑁!𝜇𝐇$ , 𝑁!𝜎𝐇$)

And, 𝑝 𝑧𝒢!"#$ |𝒢!, 𝒢& = 𝑁(𝑁!𝜇𝐇$ + ∑01!-$ 𝜆0𝐇0! − ∑01!-$ 𝜆0𝜇𝐇$ , ∑01!-$ 1 − 𝜆0
&𝜎𝐇$

& )

∵ Summation of Gaussian is Gaussian

(1)

(2)

(3)

By plugging Equation (2) and (3) into (1), we have:

−I 𝒢"#$! ; 𝒢!, 𝒢& ≤ 𝔼 𝒢$,𝒢% − !
&
log 𝐴 + !

&-$
𝐴 + !

&-$
𝐵& + 𝐶 where 𝐴 = ∑01!-$ (1 − 𝜆0)& and 𝐵 =

∑'($
)$ 3'(5'

$67*$)
%

9*$
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METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK
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∵ Chain rule of mutual information

Solute Prediction
Encourage 𝒢;<=> , which is compressed conditioned on 𝒢?, to contain as much information 
about 𝒢? as possible 
Intuition) Make use of 𝒢? when detecting 𝒢;<=>

1) Variational IB-based approach
Derive upper bound similar to the prediction loss

2) Contrastive Learning-based approach
- Minimizing the contrastive loss is proven to be equivalent to maximizing the mutual 
information
- Hence, minimize −I(G;<=> ; G?) by minimizing the contrastive loss à CGIB\]^_
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EXPERIMENTS DATASET

Chromophore dataset
Absorption max, Emission max, Lifetime

Solvation Free Energy dataset
- MNSol
- FreeSolv
- CompSol
- Abraham
- CombiSolv

Drug-Drug Interaction dataset
- ZhangDDI
- ChChMiner

Dataset statistics
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EXPERIMENTS MAIN TABLE

Performance on Molecular Interaction

Performance on Drug-Drug Interaction

Observations
Improvement gap is larger in inductive setting
∵ By detecting function group that is basic in nature à
helps generalization

Observations
Outperforms baselines on both Molecular Interaction / 
Drug-Drug Interaction tasks

Evaluation on drugs unseen during training
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EXPERIMENTS SENSITIVITY ANALYSIS

Qualitative Analysis on beta

Sensitivity Analysis on beta

β Controls Trade-off btw prediction and compression

As β increases, Compression > Prediction

•

Observations
• β = 1.0: Poor performance in general (focus on compression)
• However, the model fails to detect functional group when β is too small 
à poor generalization
à Hence, finding an appropriate β is crucial

Observations
• β = 1.0à CGIB focuses on compression
e.g., CGIB focuses an aromatic ring, which is not relevant to chemical 
reactions
• β = 0.01à CGIB focuses on prediction
e.g., CGIB focuses on external part, which generally more relevant  to 
chemical reactions
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EXPERIMENTS ABLATION STUDIES

Observations
• Considering conditional MI is the key for success in relational learning
• A naïve consideration of 𝒢> and 𝒢? rather performs worse than 

considering 𝒢> only
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EXPERIMENTS QUALITATIVE ANALYSIS

Observations
(a) Chromophore (𝒢>) interact with ordinary solvents (𝒢?)
Focus on external parts à Aligns with domain knowledge
(b) Chromophore (𝒢>) interact with liquid oxygen solvents (𝒢?)
Focus on all parts à Aligns with domain knowledge(b) Liquid oxygen solvent

(a) Ordinary solvents
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EXPERIMENTS QUALITATIVE ANALYSIS

Observations
(c) Chromophore (𝒢>) interacts with various solvents (𝒢?) 
(e.g., Trans-ethyl p-(dimethylamino) cinnamate (EDAC))
Detected parts in chromophore depend on the polarity of solvent

(c)

(d) Polarity of the structure

Oxygen-Carbon
(High Polarity)

Nitrogen-Carbon
(Low Polarity)

Nitrogen-CarbonOxygen-Carbon

Ethanol, THF, 1-Hexanol, 1-Butanol Benzene

- Case 1: High polarity solvent (Ethanol, THF, 1-hexanol, 1-butanol)
Structure with high polarity is detected (e.g., Oxygen-carbon)
à Interact with high polarity solvent

- Case 2: Low polarity solvent (Benzene solvent)
Structure with low polarity is detected (e.g., Nitrogen-Carbon)
à Interact with low polarity solvent

Detected structure of Chromophore (G>) depends on the paired solvents (G?) 
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CONCLUSION

Proposed a method for tackling relation learning tasks, which are crucial for scientific discovery
• Based on Conditional Information Bottleneck

It is crucial to consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1
(Chromophore)

• i.e., Make use of 𝒢? when detecting 𝒢;<=> of 𝒢>

CGIB has interpretability, which makes it highly practical

Interaction

?
Solute�or�Chromophore Solvent
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