Conditional Graph Information Bottleneck for Molecular Relational Learning

Namkyeong Lee, Dongmin Hyun, Gyoung S. Na, Sungwon Kim, Junseok Lee, Chanyoung Park

TABLE OF CONTENTS

Background

- Molecular Relational Learning
- Functional Group
- Information Bottleneck
- Motivation
- Conditional Graph Information Bottleneck
- Experiments
- Conclusion

BACKGROUND MOLECULAR RELATIONAL LEARNING

Molecular Relational Learning

Learning the interaction behavior between a pair of molecules

Examples

- Predicting optical properties when a **Chromophore** and **Solvent** react
- Predicting solubility when a **solute** and **solvent** react
- Predicting side effects when taking **two types of drugs** simultaneously

BACKGROUND FUNCTIONAL GROUP

Functional Group

Specific atomic groups that play an important role in determining the chemical reactivity of organic compounds

Compounds with the same functional group generally have similar properties and undergo similar chemical reactions

Examples

The hydroxyl group structure has the characteristic of increasing the pol arity of the molecule

Hence, it is important to consider functional group for molecular relational learning

BACKGROUND FUNCTIONAL GROUP

Functional Group

Specific atomic groups that play an important role in determining the chemical reactivity of organic compounds

Compounds with the same functional group generally have similar properties and undergo similar chemical reactions

Molecule can be represented as a graph Functional group can be represented as a subgraph

Recently, information theory-based approaches have been proposed to detect important subgraph

BACKGROUND INFORMATION BOTTLENECK

Information Bottleneck Theory

A theoretical approach to trade-off between information compression and preservation

Definition 2.1. (Information Bottleneck) Given random variables *X* and *Y*, the Information Bottleneck principle aims to compress *X* to a bottleneck random variable *T*, while keeping the information relevant for predicting *Y*:

$$\min_{T} -I(Y;T) + \beta I(X;T)$$
(2)

where β is a Lagrangian multiplier for balancing the two mutual information terms.

Minimize MI between X and T

- \rightarrow T should contain minimal information about X
- → <u>Compression</u>

$$\min_{T} -I(Y;T) + \beta I(X;T)$$

Maximize MI between T and Y

- \rightarrow T should contain as much information about Y as possible
- \rightarrow <u>Prediction</u>

BACKGROUND GRAPH INFORMATION BOTTLENECK

Information Bottleneck Graph

Subgraph that maximally preserves the property of the original graph

- \rightarrow Motif in ordinary graphs
- → Functional group in molecules

Definition 2.2. (IB-Graph) For a graph $\mathcal{G} = (\mathbf{X}, \mathbf{A})$ and its label information Y, the optimal graph $\mathcal{G}_{IB} = (\mathbf{X}_{IB}, \mathbf{A}_{IB})$ discovered under the IB principle is denoted as IB-Graph:

$$\mathcal{G}_{\mathrm{IB}} = \underset{\mathcal{G}_{\mathrm{IB}}}{\operatorname{arg\,min}} - I(\mathbf{Y}; \mathcal{G}_{\mathrm{IB}}) + \beta I(\mathcal{G}; \mathcal{G}_{\mathrm{IB}})$$
(3)

where X_{IB} and A_{IB} denote the task-relevant feature set and the adjacency matrix of \mathcal{G} , respectively.

BACKGROUND GRAPH INFORMATION BOTTLENECK

Extract a subgraph in terms of edges

Model an edge based Bernoulli distribution to perform graph compression

Model objective

$$\min_{\phi} -I(G_S; Y) + \beta I(G_S; G), \text{ s.t. } G_S \sim g_{\phi}(G).$$

 $\frac{\text{Proposed variational upperbound}}{\min_{\theta,\phi} -\mathbb{E}\left[\log \mathbb{P}_{\theta}(Y|G_{S})\right] + \beta \mathbb{E}\left[\text{KL}(\mathbb{P}_{\phi}(G_{S}|G)||\mathbb{Q}(G_{S}))\right],$ s.t. $G_{S} \sim \mathbb{P}_{\phi}(G_{S}|G).$ (8)

BACKGROUND GRAPH INFORMATION BOTTLENECK

Extract a subgraph in terms of nodes

Inject noise into node embeddings to perform graph compression

Can Information bottleneck theory also benefits molecular relational learning?

Yu, Junchi, Jie Cao, and Ran He. "Improving subgraph recognition with variational graph information bottleneck." CVPR 2022.

MOTIVATION

Functional Group

Specific atomic groups that play an important role in determining the chemical reactivity of organic compounds

Compounds with the same functional group generally have similar properties and undergo similar chemical reactions

On the other hand, the role of functional group varies depending on which solvent the solute reacts with!

Examples: C-CF3 structure in molecules

It is important to consider the paired solvent when detecting the important substructure from solute \rightarrow Existing approaches for information bottleneck cannot capture such a prior knowledge

Conditional Graph Information Bottleneck

Consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1 (Solute)

Proof of Lemma 3.3

Assuming that \mathcal{G}^1 , $\mathcal{G}^1_{\text{CIB}}$, \mathcal{G}^1_n , \mathcal{G}^2 , and Y satisfy the Markov condition $(Y, \mathcal{G}^1_n, \mathcal{G}^2) \to \mathcal{G}^1 \to \mathcal{G}^1_{\text{CIB}}$, we have the following inequality due to data processing inequality:

 $I(\mathcal{G}^{1}; \mathcal{G}_{\text{CIB}}^{1} | \mathcal{G}^{2}) = I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{1}, \mathcal{G}^{2}) - I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{2})$ $\geq I(\mathcal{G}_{\text{CIB}}^{1}; \mathbf{Y}, \mathcal{G}_{n}^{1}, \mathcal{G}^{2}) - I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{2})$ $= I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}_{n}^{1}, \mathcal{G}^{2}) + I(\mathcal{G}_{\text{CIB}}^{1}; \mathbf{Y} | \mathcal{G}_{n}^{1}, \mathcal{G}^{2}) - I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{2})$ $= I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}_{n}^{1}, \mathcal{G}^{2}) + I(\mathcal{G}_{\text{CIB}}^{1}; \mathbf{Y} | \mathcal{G}_{n}^{1}, \mathcal{G}^{2})$ (1)

Suppose that \mathcal{G}_n^1 and Y, \mathcal{G}_n^1 and \mathcal{G}^2 , and joint random variable $(\mathcal{G}_n^1, \mathcal{G}^2)$ and Y are independent respectively. Then, for $I(\mathcal{G}_{\text{CIB}}^1; Y | \mathcal{G}_n^1, \mathcal{G}^2)$ we have:

$$\begin{split} I\left(\mathcal{G}_{\text{CIB}}^{1}; Y | \mathcal{G}_{n}^{1}, \mathcal{G}^{2}\right) &= H(Y | \mathcal{G}_{n}^{1}, \mathcal{G}^{2}) - H\left(Y | \mathcal{G}_{n}^{1}, \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}\right) \\ &\geq H(Y | \mathcal{G}^{2}) - H\left(Y | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}\right) \\ &= I(Y; \mathcal{G}_{\text{CIB}}^{1} | \mathcal{G}^{2}) \quad (2) \end{split}$$

By plugging Equation (2) into Equation (1), we have: $I(\mathcal{G}^1; \mathcal{G}^1_{\text{CIB}} | \mathcal{G}^2) \ge I(\mathcal{G}^1_{\text{CIB}}; \mathcal{G}^1_n, \mathcal{G}^2) + I(Y; \mathcal{G}^1_{\text{CIB}} | \mathcal{G}^2)$

By minimizing CGIB objective function, the model learns a CIB-Graph with the smallest mutual information with task-irrelevant noise

LEMMA 3.3. (Noise Invariance) Given a pair of graphs $(\mathcal{G}^1, \mathcal{G}^2)$ and its label information Y, let \mathcal{G}_n^1 be a task irrelevant noise in the input graph \mathcal{G}^1 . Then, the following inequality holds:

$$I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}_{n}^{1} | \mathcal{G}^{2}) \leq -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^{1} | \mathcal{G}^{2}) + I(\mathcal{G}^{1}; \mathcal{G}_{\text{CIB}}^{1} | \mathcal{G}^{2})$$
(6)

Overall procedure

Decompose the conditional MI based on the chain rule of MI, and then derive the upper bound of the decomposed terms

$$\begin{split} -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^{1} | \mathcal{G}^{2}) &= -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}) + I(\mathbf{Y}; \mathcal{G}^{2}) \\ &- I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}) \leq \mathbb{E}_{\mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}, \mathbf{Y}}[-\log p_{\theta}(\mathbf{Y} | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2})] \end{split}$$

Prediction Loss

$$\begin{split} I(\mathcal{G}^{1};\mathcal{G}_{\mathrm{CIB}}^{1}|\mathcal{G}^{2}) &= I(\mathcal{G}_{\mathrm{CIB}}^{1};\mathcal{G}^{1},\mathcal{G}^{2}) - I(\mathcal{G}_{\mathrm{CIB}}^{1};\mathcal{G}^{2}) \\ &I(\mathcal{G}_{\mathrm{CIB}}^{1};\mathcal{G}^{1},\mathcal{G}^{2}) \leq \mathbb{E}_{\mathcal{G}^{1},\mathcal{G}^{2}}[-\frac{1}{2}\log A + \frac{1}{2N^{1}}A + \frac{1}{2N^{1}}B^{2}] \\ &\coloneqq \mathcal{L}_{\mathrm{MI}^{1}}(\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{1},\mathcal{G}^{2}) \\ &-I(\mathcal{G}_{\mathrm{CIB}}^{1};\mathcal{G}^{2}) \leq \mathbb{E}_{\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{2}}[-\log p_{\xi}(\mathcal{G}^{2}|\mathcal{G}_{\mathrm{CIB}}^{1})] \\ &\coloneqq \mathcal{L}_{\mathrm{MI}^{2}}(\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{2}) \end{split}$$

Compression Loss

$$-I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) = -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2) + I(\mathbf{Y}; \mathcal{G}^2) \qquad \because \text{ Chain rule of mutual information}$$

 $\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \beta I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

Direct calculation of mutual information is intractable; Instead, we minimize the upper bound

Proposition. (Upper bound of $-I(Y; \mathcal{G}_{CIB}^1, \mathcal{G}^2)$) Given a pair of graph ($\mathcal{G}^1, \mathcal{G}^2$), its label information *Y*, and the learned CIB-graph \mathcal{G}_{CIB}^1 , we have:

 $-\mathrm{I}(Y;\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{2}) \leq \mathbb{E}_{Y,\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{2}}\left[\log p_{\theta}\left(Y\left|\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{2}\right.\right)\right]$

where $p_{\theta}(Y|\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$ is variational approximation of $p(Y|\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$.

Proof. By the definition of mutual information and introducing variational approximation $p_{\theta}(Y|\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$ of intractable distribution $p(Y|\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$, we have:

$$\begin{split} I(Y; \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}) &= \mathbb{E}_{Y, \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}} \left[\log \frac{p(Y | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2})}{p(Y)} \right] \\ &= \mathbb{E}_{Y, \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}} \left[\log \frac{p_{\theta}(Y | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2})}{p(Y)} \right] + \mathbb{E}_{\mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}} [p(Y | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}) || p_{\theta}(Y | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2})] \\ &\geq \mathbb{E}_{Y, \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}} \left[\log \frac{p_{\theta}(Y | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2})}{p(Y)} \right] \qquad \because \text{ Non-negativity of KL divergence} \\ &= \mathbb{E}_{Y, \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}} [\log p_{\theta}(Y | \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2})] + H(Y) \end{split}$$

$$-I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) = -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2) + I(\mathbf{Y}; \mathcal{G}^2) \qquad \because \text{ Chain rule of mutual information}$$

 $\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \beta I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

Direct calculation of mutual information is intractable; Instead, we minimize the upper bound

Proposition. (Upper bound of $-I(Y; \mathcal{G}_{CIB}^1, \mathcal{G}^2)$) Given a pair of graph ($\mathcal{G}^1, \mathcal{G}^2$), its label information *Y*, and the learned CIB-graph \mathcal{G}_{CIB}^1 , we have:

 $-I(Y; \mathcal{G}_{\mathsf{CIB}}^1, \mathcal{G}^2) \leq \mathbb{E}_{Y, \mathcal{G}_{\mathsf{CIB}}^1, \mathcal{G}^2} \left[\log p_\theta \left(Y \big| \mathcal{G}_{\mathsf{CIB}}^1, \mathcal{G}^2 \right) \right]$

where $p_{\theta}(Y|\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$ is variational approximation of $p(Y|\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$.

Implementation

- Consider $p_{\theta}(Y|\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$ as a predictor parameterezied by θ , which outputs the model prediction Y based on the input pair $(\mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2)$

- The upper bound is minimized by minimizing the prediction loss $\mathcal{L}_{pred}(Y, \mathcal{G}_{CIB}^1, \mathcal{G}^2)$

 $-I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^{1} | \mathcal{G}^{2}) = -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{2}) + I(\mathbf{Y}; \mathcal{G}^{2}) \qquad \because \text{ Chain rule of mutual information}$

The 2nd term is empirically found to be not helpful

Following VIB, we treat r(Y) as fixed spherical Gaussian, $I(Y; \mathcal{G}^2) \leq \mathbb{E}_{\mathcal{G}^2} [KL(p_{\xi}(Y|\mathcal{G}^2)||r(Y))]$ where $r(Y) \sim N(Y|0, 1)$

 $\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \beta I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

Increasing the contribution of this term deteriorates the model performance

We remove the term $I(Y, G^2)$ from the model

$\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \beta I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

$$I(\mathcal{G}^{1}; \mathcal{G}^{1}_{\text{CIB}} | \mathcal{G}^{2}) = I(\mathcal{G}^{1}_{\text{CIB}}; \mathcal{G}^{1}, \mathcal{G}^{2}) - I(\mathcal{G}^{1}_{\text{CIB}}; \mathcal{G}^{2}) \qquad \because \text{ Chain rule of mutual information}$$
$$\mathcal{L}_{\text{MI}^{1}} \qquad \mathcal{L}_{\text{MI}^{2}}$$

\mathcal{L}_{MI^1} : Compression through Noise injection

 \rightarrow Injecting noise into unimportant nodes

\mathcal{L}_{MI^2} : Solute Prediction

- → Encourage $\mathcal{G}_{\text{CIB}}^1$ to contain as much information about \mathcal{G}^2 as possible
- ightarrow The term that arises from the Conditional Mutual Information
- → Key to the success of CGIB! Enables the conditional information compression of CGIB

$$\mathcal{I}(\mathcal{G}^{1}; \mathcal{G}^{1}_{\text{CIB}} | \mathcal{G}^{2}) = I(\mathcal{G}^{1}_{\text{CIB}}; \mathcal{G}^{1}, \mathcal{G}^{2}) - I(\mathcal{G}^{1}_{\text{CIB}}; \mathcal{G}^{2}) \quad \because \text{ Chain rule of mutual information}$$

$$\mathcal{L}_{\text{MI}^{1}}$$

 $\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \beta I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

Compression through Noise Injection
* Injecting noise into unimportant nodes

 ${
m H}^1_i$: Representation of node i of ${\cal G}^1$ that contains information about both $\,{\cal G}^1$, ${\cal G}^2$

 $p_i = MLP(H_i^1)$: Important of node i of \mathcal{G}^1

 $T_i^1 = \lambda_i H_i^1 + (1 - \lambda_i) \epsilon \text{ where } \lambda_i \sim Bernoulli(p_i) \text{ and } \epsilon \sim N(\mu_{H^1}, \sigma_{H^1}^2)$

Intuition) Unimportant nodes would not affect the model performance even if they are replaced with noise

Upper bound of $I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{1}, \mathcal{G}^{2})$ $I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{1}, \mathcal{G}^{2}) \leq \mathbb{E}_{\mathcal{G}_{\mathcal{G}}^{1}, \mathcal{G}^{2}} \left[-\frac{1}{2} \log A + \frac{1}{2N^{1}} A + \frac{1}{2N^{1}} B^{2} \right] \quad \text{where } A = \sum_{j=1}^{N^{1}} (1 - \lambda_{j})^{2} \text{ and } B = \frac{\sum_{j=1}^{N^{1}} \lambda_{j} (H_{j}^{1} - \mu_{H^{1}})^{2}}{\sigma_{H^{1}}}$ $\coloneqq \mathcal{L}_{MI^{1}} \left(\mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{1}, \mathcal{G}^{2} \right)$

$\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \beta I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

METHODOLOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

Upper bound of
$$I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{1}, \mathcal{G}^{2})$$

 $I(\mathcal{G}_{\text{CIB}}^{1}; \mathcal{G}^{1}, \mathcal{G}^{2}) \leq \mathbb{E}_{\mathcal{G}^{1}, \mathcal{G}^{2}} \left[-\frac{1}{2} \log A + \frac{1}{2N^{1}} A + \frac{1}{2N^{1}} B^{2} \right] \quad \text{where } A = \sum_{j=1}^{N^{1}} (1 - \lambda_{j})^{2} \text{ and } B = \frac{\sum_{j=1}^{N^{1}} \lambda_{j} (H_{j}^{1} - \mu_{H^{1}})^{2}}{\sigma_{H^{1}}}$
 $\coloneqq \mathcal{L}_{MI^{1}} \left(\mathcal{G}_{\text{CIB}}^{1}, \mathcal{G}^{1}, \mathcal{G}^{2} \right)$

Proof. Given the perturbed graph \mathcal{G}_{CIB}^1 and its representation $z_{\mathcal{G}_{CIB}^1}$, we assume there is no information loss during the readout process, i.e., $I\left(z_{\mathcal{G}_{CIB}^1}; \mathcal{G}^1, \mathcal{G}^2\right) = I\left(\mathcal{G}_{CIB}^1; \mathcal{G}^1, \mathcal{G}^2\right)$.

$$\begin{split} I\left(z_{\mathcal{G}_{\text{CIB}}^{1}};\mathcal{G}^{1},\mathcal{G}^{2}\right) &= \mathbb{E}_{z_{\mathcal{G}_{\text{CIB}}^{1}},\mathcal{G}^{1},\mathcal{G}^{2}} \left[-\log \frac{p_{\phi}\left(z_{\mathcal{G}_{\text{CIB}}^{1}}|\mathcal{G}^{1},\mathcal{G}^{2}\right)}{p(z_{\mathcal{G}_{\text{CIB}}^{1}})} \right] \\ &= \mathbb{E}_{\mathcal{G}^{1},\mathcal{G}^{2}} \left[-\log \frac{p_{\phi}\left(z_{\mathcal{G}_{\text{CIB}}^{1}}|\mathcal{G}^{1},\mathcal{G}^{2}\right)}{q(z_{\mathcal{G}_{\text{CIB}}^{1}})} \right] - \mathbb{E}_{z_{\mathcal{G}_{\text{CIB}}^{1}},\mathcal{G}^{1},\mathcal{G}^{2}} \left[KL(p\left(z_{\mathcal{G}_{\text{CIB}}^{1}}\right)||q\left(z_{\mathcal{G}_{\text{CIB}}^{1}}\right)) \right] \\ &\leq \mathbb{E}_{z_{\mathcal{G}_{\text{CIB}}^{1}},\mathcal{G}^{1},\mathcal{G}^{2}} \left[KL(p_{\phi}\left(z_{\mathcal{G}_{\text{CIB}}^{1}}|\mathcal{G}^{1},\mathcal{G}^{2}\right)||q\left(z_{\mathcal{G}_{\text{CIB}}^{1}}\right)) \right] \quad (1) \qquad \because \text{ Non-negativity of KL divergence} \end{split}$$

Assuming that $q\left(z_{\mathcal{G}_{CIB}}^{1}\right)$ is Gaussian distribution.

The noise $\varepsilon \sim N(\mu_{H^1}, \sigma_{H^1})$ is sampled from Gaussian distribution where μ_{H^1} and σ_{H^1} are mean and variance of H^1 .

Thus,
$$q\left(z_{\mathcal{G}_{\text{CIB}}^{1}}\right) = N(N^{1}\mu_{\text{H}^{1}}, N^{1}\sigma_{\text{H}^{1}})$$
 (2) \because Summation of Gaussian is Gaussian
And, $p\left(z_{\mathcal{G}_{\text{CIB}}^{1}}|\mathcal{G}^{1}, \mathcal{G}^{2}\right) = N(N^{1}\mu_{\text{H}^{1}} + \sum_{j=1}^{N^{1}}\lambda_{j}\mathbf{H}_{j}^{1} - \sum_{j=1}^{N^{1}}\lambda_{j}\mu_{\text{H}^{1}}, \sum_{j=1}^{N^{1}}\left(1-\lambda_{j}\right)^{2}\sigma_{\text{H}^{1}}^{2})$ (3)

By plugging Equation (2) and (3) into (1), we have:

$$-I(\mathcal{G}_{\text{CIB}}^{1};\mathcal{G}^{1},\mathcal{G}^{2}) \leq \mathbb{E}_{\mathcal{G}^{1},\mathcal{G}^{2}}\left[-\frac{1}{2}\log A + \frac{1}{2N^{1}}A + \frac{1}{2N^{1}}B^{2}\right] + C \text{ where } A = \sum_{j=1}^{N^{1}} (1-\lambda_{j})^{2} \text{ and } B = \frac{\sum_{j=1}^{N^{1}} \lambda_{j}(H_{j}^{1}-\mu_{H^{1}})^{2}}{\sigma_{H^{1}}}$$

$$I(\mathcal{G}^{1}; \mathcal{G}^{1}_{\text{CIB}} | \mathcal{G}^{2}) = I(\mathcal{G}^{1}_{\text{CIB}}; \mathcal{G}^{1}, \mathcal{G}^{2}) - I(\mathcal{G}^{1}_{\text{CIB}}; \mathcal{G}^{2}) \qquad \because \text{ Chain rule of mutual information}$$

 $\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \beta I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

Solute Prediction

Encourage $\mathcal{G}_{\text{CIB}}^1$, which is compressed conditioned on \mathcal{G}^2 , to contain as much information about \mathcal{G}^2 as possible Intuition) Make use of \mathcal{G}^2 when detecting $\mathcal{G}_{\text{CIB}}^1$

<u>1) Variational IB-based approach</u> Derive upper bound similar to the prediction loss

$$-I(\mathcal{G}_{\mathrm{CIB}}^{1};\mathcal{G}^{2}) \leq \mathbb{E}_{\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{2}}[-\log p_{\xi}(\mathcal{G}^{2}|\mathcal{G}_{\mathrm{CIB}}^{1})] \coloneqq \mathcal{L}_{\mathrm{MI}^{2}}(\mathcal{G}_{\mathrm{CIB}}^{1},\mathcal{G}^{2})$$

2) Contrastive Learning-based approach

- Minimizing the contrastive loss is proven to be equivalent to maximizing the mutual information

- Hence, minimize $-I(G_{CIB}^1; G^2)$ by minimizing the contrastive loss $\rightarrow CGIB_{cont}$

$$\mathcal{L}_{\mathrm{MI}^2} = -\frac{1}{K} \sum_{i=1}^{K} \log \frac{\exp(\mathrm{sim}(\mathbf{z}_{\mathcal{G}_{\mathrm{CIB},i}^1}, \mathbf{z}_{\mathcal{G}_i^2})/\tau)}{\sum_{j=1, j \neq i}^{K} \exp(\mathrm{sim}(\mathbf{z}_{\mathcal{G}_{\mathrm{CIB},i}^1}, \mathbf{z}_{\mathcal{G}_j^2})/\tau)}$$

EXPERIMENTS DATASET

Dataset		\mathcal{G}^1	\mathcal{G}^2	$\# \mathcal{G}^1$	$\# \mathcal{G}^2$	# Pairs	Task
Chro-	Absorption	Chrom.	Solvent	6416	725	17276	reg.
moph-	Emission	Chrom.	Solvent	6412	1021	18141	reg.
ore ¹	Lifetime	Chrom.	Solvent	2755	247	6960	reg.
MNSol ²		Solute	Solvent	372	86	2275	reg.
FreeSolv ³		Solute	Solvent	560	1	560	reg.
CompSol ⁴		Solute	Solvent	442	259	3548	reg.
Abraham ⁵		Solute	Solvent	1038	122	6091	reg.
CombiSolv ⁶		Solute	Solvent	1495	326	10145	reg.
ZhangDDI ⁷		Drug	Drug	544	544	40255	cls.
ChChMiner ⁸		Drug	Drug	949	949	21082	cls.

Dataset statistics

Chromophore dataset

Absorption max, Emission max, Lifetime

Solvation Free Energy dataset

- MNSol
- FreeSolv
- CompSol
- Abraham
- CombiSolv

Drug-Drug Interaction dataset

- ZhangDDI
- ChChMiner

EXPERIMENTS MAIN TABLE

	Chromophore		MNISol	FreeSolv	CompSol	Abraham	CombiSoly	
	Absorption	Emission	Lifetime	10110301	FreeSorv	Compsor	ADIalialii	Combisolv
GCN	25.75 (1.48)	31.87 (1.70)	0.866 (0.015)	0.675 (0.021)	1.192 (0.042)	0.389 (0.009)	0.738 (0.041)	0.672 (0.022)
GAT	26.19 (1.44)	30.90 (1.01)	0.859 (0.016)	0.731 (0.007)	1.280 (0.049)	0.387 (0.010)	0.798 (0.038)	0.662 (0.021)
MPNN	24.43 (1.55)	30.17 (0.99)	0.802 (0.024)	0.682 (0.017)	1.159 (0.032)	0.359 (0.011)	0.601 (0.035)	0.568 (0.005)
GIN	24.92 (1.67)	32.31 (0.26)	0.829 (0.027)	0.669 (0.017)	1.015 (0.041)	0.331 (0.016)	0.648 (0.024)	0.595(0.014)
CIGIN	19.32 (0.35)	25.09 (0.32)	0.804 (0.010)	0.607 (0.024)	0.905 (0.014)	0.308 (0.018)	0.411 (0.008)	0.451 (0.009)
CGIB	17.87 (0.38)	24.44 (0.21)	0.796 (0.010)	0.568 (0.013)	0.831 (0.012)	0.277 (0.008)	0.396 (0.009)	0.428 (0.009)
CGIB _{cont}	18.11 (0.20)	23.90 (0.35)	0.771 (0.005)	0.538 (0.007)	0.852 (0.022)	0.276 (0.017)	0.390 (0.006)	0.422 (0.005)

Performance on Molecular Interaction

Observations

Outperforms baselines on both Molecular Interaction / Drug-Drug Interaction tasks

Evaluation on drugs unseen during training

	(a) Transductive				(b) Inductive			
	ZhangDDI		ChChMiner		ZhangDDI		ChChMiner	
	AUROC	Accuracy	AUROC	Accuracy	AUROC	Accuracy	AUROC	Accuracy
GCN	91.64 (0.31)	83.31 (0.61)	94.71 (0.33)	87.36 (0.24)	68.39 (1.85)	63.78 (1.55)	73.63 (0.44)	67.07 (0.66)
GAT	92.10 (0.28)	84.14 (0.38)	96.15 (0.53)	89.49 (0.88)	69.99 (2.95)	64.41 (1.39)	75.72 (1.66)	68.77 (1.48)
MPNN	92.34 (0.35)	84.56 (0.31)	96.25 (0.53)	90.02 (0.42)	71.54 (1.24)	65.12 (1.14)	75.45 (0.32)	68.24 (1.42)
GIN	93.16 (0.04)	85.59 (0.05)	97.52 (0.05)	91.89 (0.66)	72.74 (1.32)	66.16 (1.21)	74.63 (0.48)	67.80 (0.46)
SSI-DDI	92.74 (0.12)	84.61 (0.18)	98.44 (0.08)	93.50 (0.16)	73.29 (2.23)	66.53 (1.31)	78.24 (1.29)	70.69 (1.47)
MIRACLE	93.05 (0.07)	84.90 (0.36)	88.66 (0.37)	84.29 (0.14)	73.23 (3.32)	50.00 (0.00)	60.25 (0.56)	50.09 (0.11)
CIGIN	93.28 (0.13)	85.54 (0.30)	98.51 (0.10)	93.77 (0.25)	74.02 (0.10)	66.81 (0.09)	79.23 (0.51)	71.56 (0.38)
CGIB	94.27 (0.47)	86.88 (0.56)	98.80 (0.04)	94.69 (0.16)	74.59 (0.88)	67.65 (1.07)	81.14 (1.20)	72.47 (0.16)
CGIB _{cont}	93.78 (0.62)	86.36 (0.75)	98.84 (0.31)	94.52 (0.38)	75.08 (0.34)	67.31 (0.82)	81.51 (0.67)	74.29 (0.14)

Performance on Drug-Drug Interaction

Observations

Improvement gap is larger in inductive setting \therefore By detecting function group that is basic in nature \rightarrow

helps generalization

EXPERIMENTS SENSITIVITY ANALYSIS

Qualitative Analysis on beta

$\min -I(\mathbf{Y}; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2) + \mathcal{O}I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1 | \mathcal{G}^2)$

BControls Trade-off btw prediction and compression

As β increases, Compression > Prediction

Observations

- $\beta = 1.0$: Poor performance in general (focus on compression)
- However, the model fails to detect functional group when β is too small
- \rightarrow poor generalization
- \rightarrow Hence, finding an appropriate β is crucial

Observations

• $\beta = 1.0 \rightarrow$ CGIB focuses on compression

e.g., CGIB focuses an aromatic ring, which is not relevant to chemical reactions

• $\beta = 0.01 \rightarrow \text{CGIB}$ focuses on prediction

e.g., CGIB focuses on external part, which generally more relevant to chemical reactions

EXPERIMENTS ABLATION STUDIES

Observations

- Considering conditional MI is the key for success in relational learning
- A naïve consideration of \mathcal{G}^1 and \mathcal{G}^2 rather performs worse than considering \mathcal{G}^1 only

1. Without IB $\rightarrow \min - I(Y; \mathcal{G}^1, \mathcal{G}^2)$ (Same as CIGIN) 2. $I(\mathcal{G}_{\text{CIB}}^1; \mathcal{G}^1) \rightarrow \min - I(Y; \mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2) + I(\mathcal{G}_{\text{CIB}}^1; \mathcal{G}^1)$ (Same as VGIB) 3. $I(\mathcal{G}_{\text{CIB}}^1; \mathcal{G}^1, \mathcal{G}^2) \rightarrow \min - I(Y; \mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2) + I(\mathcal{G}_{\text{CIB}}^1; \mathcal{G}^1, \mathcal{G}^2)$ 4. $I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1|\mathcal{G}^2) \rightarrow \min - I(Y; \mathcal{G}_{\text{CIB}}^1, \mathcal{G}^2) + I(\mathcal{G}^1; \mathcal{G}_{\text{CIB}}^1|\mathcal{G}^2)$ (Same as CGIB)

EXPERIMENTS QUALITATIVE ANALYSIS

(a) Ordinary solvents

(b) Liquid oxygen solvent

Observations

(a) Chromophore (\mathcal{G}^1) interact with ordinary solvents (\mathcal{G}^2) Focus on external parts \rightarrow Aligns with domain knowledge (b) Chromophore (\mathcal{G}^1) interact with liquid oxygen solvents (\mathcal{G}^2) Focus on all parts \rightarrow Aligns with domain knowledge

EXPERIMENTS QUALITATIVE ANALYSIS

Oxygen-Carbon (High Polarity)

Nitrogen-Carbon (Low Polarity)

Observations

(c) Chromophore (\mathcal{G}^1) interacts with various solvents (\mathcal{G}^2) (e.g., Trans-ethyl p-(dimethylamino) cinnamate (EDAC)) Detected parts in chromophore depend on the polarity of solvent

Case 1: High polarity solvent (Ethanol, THF, 1-hexanol, 1-butanol)
 Structure with high polarity is detected (e.g., Oxygen-carbon)
 → Interact with high polarity solvent

Case 2: Low polarity solvent (Benzene solvent)
 Structure with low polarity is detected (e.g., Nitrogen-Carbon)
 → Interact with low polarity solvent

Detected structure of Chromophore (G^1) depends on the paired solvents (G^2)

CONCLUSION

Proposed a method for tackling relation learning tasks, which are crucial for scientific discovery

Based on Conditional Information Bottleneck

It is crucial to consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1 (Chromophore)

- i.e., Make use of \mathcal{G}^2 when detecting $\mathcal{G}^1_{\mathrm{CIB}}$ of \mathcal{G}^1

CGIB has interpretability, which makes it highly practical

THANK YOU!

[Full Paper] https://openreview.net/forum?id=5hz3GV4lPg

[Source Code] <u>https://github.com/Namkyeong/CGIB</u>

[Author Email] <u>namkyeong96@kaist.ac.kr</u>