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BAC KG RO U N D MOLECULAR RELATIONAL LEARNING

Molecular Relational Learning
Learning the interaction behavior between a pair of molecules
) : ’ Examples
- Predicting optical properties when a Chromophore and Solvent react
? - Predicting solubility when a solute and solvent react

- Predicting side effects when taking two types of drugs simultaneously




BAC KG RO U N D FUNCTIONAL GROUP

I'4
|
|
' R—0 Functional Group
: \H : Specific atomic groups that play an important role in determining
! : the chemical reactivity of organic compounds
1 Hydroxyl Group’I

Compounds with the same functional group generally have similar
properties and undergo similar chemical reactions

|I'| OHOHOHH OHO
I 1 1 1 1 |
R—C— OH H—C—C—C—C—C—C—H Examples o
| | ] | | ] The hydroxyl group structure has the characteristic of increasing the pol
H H H H OHH arity of the molecule
Alcohol Glucose

Hence, it is important to consider functional group for molecular relational learning



BAC KG RO U N D FUNCTIONAL GROUP

Functional Group
Specific atomic groups that play an important role in determining
the chemical reactivity of organic compounds

Compounds with the same functional group generally have similar

Functional Group 2 . o _ _
properties and undergo similar chemical reactions

Molecule can be represented as a graph

Functional Group 1 Functional group can be represented as a subgraph

Recently, information theory-based approaches have been proposed to detect important subgraph



BAC KG RO U N D INFORMATION BOTTLENECK

Definition 2.1. (Information Bottleneck) Given random variables
X and Y, the Information Bottleneck principle aims to compress X
to a bottleneck random variable T, while keeping the information
relevant for predicting Y:

m]in -I(Y;T) + BI(X;T) (2)

where f is a Lagrangian multiplier for balancing the two mutual
information terms.

Information Bottleneck Theory

A theoretical approach to trade-off between information compression
and preservation

Minimize M| between Xand T
- T should contain minimal information about X
- Compression

mTin —I1(Y;T) + SI(X; T)

Maximize Ml between T and Y
- T should contain as much information about Y as possible

- Prediction
( )\
X Compression T Prediction y
) EEE—
Input Bottleneck Output
Variable Variable Variable
.




BAC KG RO U N D GRAPH INFORMATION BOTTLENECK

Information Bottleneck Graph

Subgraph that maximally preserves the property of the original graph
- Motif in ordinary graphs

— Functional group in molecules

Definition 2.2. (IB-Graph) For a graph G = (X, A) and its label
information Y, the optimal graph Gig = (Xig, Aig) discovered under
the IB principle is denoted as IB-Graph:

G = argglmin —-1(Y; GB) + PI(G; G1B) (3)

where Xig and Arg denote the task-relevant feature set and the

adjacency matrix of G, respectively. Functional Group of Molecule

( )
Compression Prediction
E— R

9 918 Y
Input Bottleneck Target
Graph Graph Variable




BAC KG RO U N D GRAPH INFORMATION BOTTLENECK

Extract a subgraph in terms of edges

Model an edge based Bernoulli distribution to perform graph compression

. Extractor 9o

L

Edge Emb

@-L o

_________________

__________________________________________

Model objective

m(gn —I(Ggs;Y)+ BI(Gg;G), s.t. Gg ~ g¢(G).

Proposed variational upperbound

_______________________________________________________

\_ Predictor fy

Miao, Siqi, Mia Liu, and Pan Li. "Interpretable and generalizable graph learning via stochastic attention mechanism." ICML 2022

Igl’i(bﬂ —E [logPy(Y'|Gs)] + BE [KL(Py(Gs|G)||Q(Gs))]

st. Gg NP¢(GS‘G). (8)



BAC KG RO U N D GRAPH INFORMATION BOTTLENECK

Extract a subgraph in terms of nodes
Inject noise into node embeddings to perform graph compression

EE— I
I o I
I Readout Prediction ¥': Ring v/
I + RIng I
I
G
N

G hy - hy
Y: Ring vV

i

fzi = Aih; + (1 — 2;)€|

i i Noise
Select P Sample T ° Injection
CEE—— 1 n €~ .
p; = 0.5 A;~Ber(p;) PNoise

Gsub
(a)

I
I Readout

I

|

I

: Prediction

I
iRing V: 0.96 Ring V: 0.37

'Ring x: 0.04 Ring x: 0.63
I

(b)

Can Information bottleneck theory also benefits molecular relational learning?

Yu, Junchi, Jie Cao, and Ran He. "Improving subgraph recognition with variational graph information bottleneck.” CVPR 2022.



MOTIVATION

Functional Group

@ Specific atomic groups that play an important role in determining
. . Water the chemical reactivity of organic compounds
F Decrease Solubility Compounds with the same functional group generally have similar

properties and undergo similar chemical reactions

© ] On the other hand, the role of functional group varies depending
C-CF3 Structure | Oil on which solvent the solute reacts with!

\
~ ’

7
 C—C—F

———

Examples: C-CF3 structure in molecules

It is important to consider the paired solvent when detecting the important substructure from solute

—> Existing approaches for information bottleneck cannot capture such a prior knowledge
10



M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

Conditional Graph Information Bottleneck
Consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1 (Solute)

gIB — arg min —[(Y; gIB) 4+ 51(9; gIB) Graph Information Bottleneck

g1B

g(lle = arg min —I(Y; g(lle|92) ¢ B](gl; g(leB |Q2) Conditional Graph Information Bottleneck
g(lle

1



M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

Proof of Lemma 3.3

Assuming that G, G5, G, G2, and Y satisfy the Markov condition (Y, G2, G?) - G = G5,
we have the following inequality due to data processing inequality:

1(6% 688|62) = 1(Gés;: 6% 62) — 1(Géss G%)
> 1(Gé; Y. Gm, G2) — 1(Géss G%)

LEMMA 3.3. (Noise Invariance) Given a pair of graphs (G', G?) — 1(CLo: G1 G2) + I(GLo:VIGL G2) — I(GL.o: G2
and its label information Y, let G} be a task irrelevant noise in the (Gcrpi 6:G%) + 1(Gerws YGn 6°) = 1(Gémi G°)
input graph G'. Then, the following inequality holds: =1(G&ws G& G2) + 1(Glis; YIGE G2) (1)

(G GalG?) < ~I(Y: GoiplG?) + (G G lG?) (6) . - , ,
Suppose that G and Y, G and G2, and joint random variable (G, G%) and Y are independent respectively.

Then, for I(Géig; YIGR, G2) we have:

1(GeiB; YIG, 6%) = H(Y1G3, 62 — H(Y|G%, Gdie, G2)
> H(Y1G*) — H(Y|G¢8, 6°)
= 1(Y; G816 (2

By plugging Equation (2) into Equation (1), we have:
16" Gaisl6?) = 1(Gews Gn,G°) +1(Y; GérplG?)

By minimizing CGIB objective function,

the model learns a CIB-Graph with the smallest mutual information with task-irrelevant noise
12



M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

LMII LMIZ
n
=
VA4
F G, [
s T Readout
=
Tl
/11, ey ){Nl -
T Sampling ' g%lB
pll ey le =

Importance %ﬁ

H!=(E!||E!

Lpred

THN )z

Readout

H?= (E?||E?)

Node
Interaction

I

El :|>N1

g c TGNN

min SI(Vi GERIGY +5 NGHGERIED

Overall procedure

Decompose the conditional Ml based on the chain rule of M,
and then derive the upper bound of the decomposed terms

s

~I(Y; GoplG?) = —1(Y; Go, G°) + 1(Y; G°)

\

~I(Y; Gep. G°) S By goy[=logpo(YIGep, 67)]

(G GglG?) = I(Gig: G G%) ~1(Gip: G°)
[(Gig: G'.G?) <Egi g [—% log A + #A +

= Lyp (Go 61,67

= £M12(g(1:113’ G°)

1 9
——B
2N1 |

_I(g(leB§g2) < Egl , G2 [- IOgP§(§2|g(1:IB)]
CIB

Prediction Loss

Compression Loss

13



min SIS GERlG%) +A (G G |G?)

M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

LMI1 LMIZ
n
=
VA4
F G, [
s TReadout
=
Tl
/11, ey ){Nl -
T Sampling
pll ey le =

Importance %

H!=(E!||E!

Lpred

THN )z

Readout

H2= (2| |E%)

Node

Interaction I

El :|>N1

g : TGNN

—I(Y; §é1B|Q2) = —I(Y; géIB, G +1(Y; G%) *» Chain rule of mutual information

Direct calculation of mutual information is intractable;
Instead, we minimize the upper bound

(Proposition. (Upper bound of —I(Y; G5, G?)) Given a pair of graph (G1, G?), its label information Y, )
and the learned CIB-graph G},5, we have:
—I(Y; G, 6%) < Ey g1 g2[logpa(Y|Gie 6%)]
\Where po(Y|Geip, G?) is variational approximation of p(Y|Ggig, G2). )

Proof. By the definition of mutual information and introducing variational approximation pg (Y |Gdg, G2) of

intractable distribution p(Y|Géig, G2), we have:
p(Y|Gép, G2)

p(Y)

1
[a—

I(Y;Gei G%) = By, 62 |08

[ pe(Y|GéB, G2)
Ey gts g2 108 =0

-lOg po(Y|Geis. G%)]

v

IEYr 6w, G2 i p(Y)

+ E gy, g2 [P(Y1688 G2)1IPo (Y |Gere, G2)]

- Non-negativity of KL divergence

= Ey 1562 [log po(Y|Géis, 6%)] + H(Y)

14



min =I(Y; g(lle |62) +p I(gl; g(leB |gz)
M ETHODO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

iy Lyz  Lprea -I(Y; §é1B|Q2) = -I1(Y; géIB, GH +I1(Y;G?) » Chain rule of mutual information
o
< z rEE Wz . . . L
E G TR st 1 §* Direct calculation of mutual information is intractable;
< eadou ..
g ) Instead, we minimize the upper bound
T e
Ay e Ayt —> S - : : : : :
! ! E (Proposmon. (Upper bound of —=I(Y; G5, G?)) Given a pair of graph (G, G?), its label information Y, )
T Sampling and the learned CIB-graph G}z, we have:
Pr Pt = H2= (E2||E2) ~I(Y; Géip, G) < Ey 1. 62 [logpa(Y |G G2)]
‘ where pg(Y|Géip, G2) is variational approximation of p(Y|Gé;g, G2).
Importance S /
1_ (g1l .
H=(ET|E one Implementation
Interaction I - Consider pg(Y|Géig, G?) as a predictor parameterezied by 8, which outputs the model
E! :|>N1 g2 }NZ prediction Y based on the input pair (géIB,gz)

- The upper bound is minimized by minimizing the prediction loss Lyeq(Y, gélB,gz)

. TGNN 2
e s N

15



min SIS GERlG%) +A (G G |G?)

M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

LMI1 LMIZ
in
=
VA4
F Gt [
s T Readout
=
Tl
/11, . ,){Nl -
T Sampling
pll ey le =

Importance %ﬁ

H!=(E!||E!

Lpred

THN )z

Readout

H?= (E?||E?)

Node
Interaction

I

El :|>N1

g : TGNN

—I(Y; §é1B|Qz) = —I(Y; géIB, G +1(Y; G%) *» Chain rule of mutual information

The 2" term is empirically found to be not helpful

e CGIB CGIBeont
Absorption Emission
22 A 28 -
21 27 A . . . .
/ Following VIB, we treat r(Y) as fixed spherical Gaussian,
w 20+ 26 A
wn
2 | N> — 4 1(Y;62) < Ege[KL(pe (YIGDIIr (V)]
o«
18{§g— " 24| where r(Y)~N(Y|0,1)
17 = T T T 23— T T T
0.0 0.01 0.1 1.0 0.0 0.01 0.1 1.0

Weight coefficient for 1(Y; G?)

Increasing the contribution of this term deteriorates the model performance

We remove the term I(Y,G?) from the model

16



M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

LMI1 LMIZ
n
=
VA4
F G, [
s TReadout
=
Tl
/11, ey ){Nl -
T Sampling
pll ey le =

Importance %ﬁ

H!=(E!||E!

Lpred

THN )z

Readout

H?= (E?||E?)

Node
Interaction

I

El :|>N1

T GNN

FEN,

min~1(Y; Gl1G?) +5 G HGERIED)

I(Ql; géIB|g2) = I(g(]jIB; gl, gz) —I(QéIB; Qz) > Chain rule of mutual information

LMI]‘ LMIZ

Ly1: Compression through Noise injection
—> Injecting noise into unimportant nodes

Ly2: Solute Prediction

- Encourage Gl to contain as much information about G2 as possible
—> The term that arises from the Conditional Mutual Information

- Key to the success of CGIB! Enables the conditional information compression of CGIB

17



M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

LMI1 LMIZ Lpred
3
= z
F 6L, L THIN ]“jj Zg2
= T Readout
=]
=
T! E
/11, ey ){Nl - g
&
T Sampling
pll ey le = 5
‘[ H?= (E?||E?)
Importance %ﬁ
H'=(E!||E?

Node
Interaction I

El :|,N1 EZ }NZ
TGNN

P p A

min —I(Y; GL.316%) +p G GARIED

1(G"; géIB|gz) = I(géIB; G'.G* —I(géIB; G®) Chain rule of mutual information
LMII

Compression through Noise Injection
* Injecting noise into unimportant nodes

H! : Representation of node i of G! that contains information about both G1,G?

p; = MLP(H}) : Important of node i of G
T = 4H{ + (1 — A& where Aj~Bernoulli(p;) and e~N (i1, 051)

Intuition) Unimportant nodes would not affect the model performance even if they are
replaced with noise

. )
Upper bound of 1(G¢; 6% 62)

1 1 2 1 1 1 2 N1 2 Z;V=11 A}'(Hjl'_ﬂHl)z
1(Ghie: G4, 6?) S Egrgz [~3logA+ s A+——B?|  whered = X/Z,(1 - 4)? and B = -

= Ly (Gés, G4 G%)

18



min -1(Y; GoplG*) +BIGY GoplG?)
M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

( )
Upper bound of 1(G¢; 6% 62)
LMI1 LMIZ Lpred
) 2 _ YN 1 _ 2132 B0 A5 (H} —)?
E 61, I Tz, I(QCIB,Q G ) S Egige [——logA + —A + WB ] where A = );_1(1—4;)“and B = -~
E Readout |
s T cacon = Ly (Gis G4 6%)
(=]
Ay oo Ayt —> E Proof. Given the perturbed graph G&;g and its representation Zg1 > WE assume there is no information loss during the
T Sampling readout process, i.e., [ (Zgém; gl,gz) =1(G&s;: 61 62).
pll ...,le = 5 52
H“=(E-||E 102
(E”||E®) ( G52 ) 1 P a5
2Gtg’ ZgéIB'Q 9 J p(zg1 )
Importance CIB
= Py (z.1 16167
H=(E'||E! — oo ——Scs” "~ 7
el Node [Egl_gz [ log Q(Zgém) l [EzgéIB'gl'gz [KL(p (29(1:13) lla (Zg(lle))]
Interaction I
1 ~2 3 i .. .
El }Nl E2 }NZ < ]EZgéIB'gl’gz [KL(p¢ (g2 16%G9)lq (Zgém))] (1) -+ Non-negativity of KL divergence
T TGNN Assuming that g (Zgém) is Gaussian distribution.
GNN ) . NPT .
glb‘\f f/)\o The noise e~N (uy1, o) is sampled from Gaussian distribution where uy: and oy are mean and variance of H.
Thus, q (29(1:13) = N(Nlug1, Nloy) (2) ~» Summation of Gaussian is Gaussian

1 1 1 2
And, p (zg3 16%,6%) = N(N s + T2, 4HF = 22 A, BV (1= ) o) )

By plugging Equation (2) and (3) into (1), we have:

1.\’_1 A:(HY= 2
~1(Glmi 61, 62) < Egiga [~2logA + sorA + = B2] + € where A = S,(1— 4))? and B = 2200 Fud)

2N1 oyt

19



min~1(Y; Gl1G?) +5 G HGERIED)

M ETH O DO LOGY CONDITIONAL GRAPH INFORMATION BOTTLENECK

LMll LMIZ
n
=
VA4
F G, [
s TReadout
=
Tl
/11, ey ){Nl -
T Sampling
pll ey le =

Importance %ﬁ

H!=(E!||E!

£pred

THN )z

Readout

H?= (E?||E?)

Node
Interaction

I

El :|>N1

T GNN

FEN,

1(G'; géIB|gz) = I(géIB; G'.G% —I(Q&B; G*)  « Chain rule of mutual information

Solute Prediction

Encourage géIB, which is compressed conditioned on gz, to contain as much information
about G2 as possible

Intuition) Make use ofg2 when detecting géIB

1) Variational IB-based approach
Derive upper bound similar to the prediction loss

~1(Gew: 6°) < Egy g2 [-1ogpe(G°1Gem)] = Ly (e, G°)

2) Contrastive Learning-based approach

- Minimizing the contrastive loss is proven to be equivalent to maximizing the mutual
information

- Hence, minimize —I(G¢g; G?) by minimizing the contrastive loss = CGIBgn¢

K
1
LMIZ == log -
K ; Zﬁ'{:l,jii eXp(Slm(Zg(l:IB’i, Zgjz)/f)

exp(sim(zg(]jIB - zgl_z)/r)

20



EXPERIMENTS oamaser

Chromophore dataset
Absorption max, Emission max, Lifetime

Dataset ‘ G! G? #G' #G* #Pairs Task
Chro- | Absorption | Chrom. Solvent 6416 725 17276  reg. Solvation Free Energy dataset
moph- | Emission | Chrom. Solvent 6412 1021 18141  reg. MNSol
ore ! Lifetime | Chrom. Solvent 2755 247 6960  reg. o
MNSol 2 Solute  Solvent 372 86 2275  reg. - FreeSolv
FreeSolv * Solute  Solvent 560 1 560 reg.
CompSol * Solute  Solvent 442 259 3548 reg. Com pSOI
Abraham ° Solute  Solvent 1038 122 6091  reg. - Abraham
CombiSolv ° Solute  Solvent 1495 326 10145  reg. - CombiSolv
ZhangDDI ’ Drug Drug 544 544 40255  cls.
ChChMiner 8 Drug  Drug 949 949 21082  dls.
Dataset statistics Drug-Drug Interaction dataset
- ZhangDDI

- ChChMiner



EXPERI IVI ENTS MAIN TABLE

Observations

Outperforms baselines on both Molecular Interaction /
Drug-Drug Interaction tasks

/ Evaluation on drugs unseen during training

Observations

Ao Ché;r?s(;?:r?re S MNSol FreeSolv CompSol Abraham  CombiSolv
GCN 25.75 (1.48)  31.87 (1.70)  0.866 (0.015) | 0.675 (0.021)  1.192 (0.042)  0.389 (0.009)  0.738 (0.041)  0.672 (0.022)
GAT 26.19 (1.44) 30.90 (1.o1)  0.859 (0.016) | 0.731 (0.007)  1.280 (0.049)  0.387 (0.010)  0.798 (0.038)  0.662 (0.021)
MPNN 24.43 (1.55) 30.17 (0.99)  0.802 (0.024) | 0.682 (0.017)  1.159 (0.032)  0.359 (0.011)  0.601 (0.035)  0.568 (0.005)
GIN 24.92 (1.67) 32.31 (0.26)  0.829 (0.027) | 0.669 (0.017)  1.015 (0.041)  0.331 (0.016)  0.648 (0.024)  0.595 (0.014)
CIGIN 19.32 (0.35) 25.09 (0.32)  0.804 (0.010) | 0.607 (0.024)  0.905 (0.014)  0.308 (0.018)  0.411 (0.008)  0.451 (0.009)
CGIB 17.87 (0.38) 24.44 (0.21)  0.796 (0.010) | 0.568 (0.013)  0.831(0.012)  0.277 (0.008)  0.396 (0.009)  0.428 (0.009)
CGIBcont 18.11 (0.20) 23.90 (0.35)  0.771 (0.005) | 0.538 (0.007)  0.852 (0.022) 0.276 (0.017)  0.390 (0.006)  0.422 (0.005)
Performance on Molecular Interaction
(a) Transductive (b) Inductive
ZhangDDI ChChMiner ZhangDDI ChChMiner
AUROC Accuracy  AUROC Accuracy | AUROC Accuracy  AUROC Accuracy
GCN 91.64 (031)  83.31 (0.61) 94.71 (033)  87.36 (0.24) | 68.39 (1.85)  63.78 (1.55)  73.63 (0.44) 67.07 (0.66)
GAT 92.10 (0.28) 84.14 (038) 96.15(053)  89.49 (0.88) | 69.99 (2.95)  64.41(1.39)  75.72 (1.66)  68.77 (1.48)
MPNN 92.34 (035)  84.56 (031)  96.25(053)  90.02 (0.42) | 71.54 (1.24) 65.12(1.14)  75.45 (032) 68.24 (142)
GIN 93.16 (0.04)  85.59 (0.05) 97.52 (0.05)  91.89 (0.66) | 72.74 (1.32)  66.16 (1.21)  74.63 (0.48)  67.80 (0.46)
SSI-DDI 92.74 (0.12)  84.61 (0.18)  98.44 (0.08)  93.50 (0.16) | 73.29 (2.23)  66.53 (1.31)  78.24 (1.29)  70.69 (1.47)
MIRACLE | 93.05 (0.07) 84.90 (036)  88.66 (0.37)  84.29 (0.14) | 73.23 (332)  50.00 (0.00)  60.25 (0.56)  50.09 (0.11)
CIGIN 93.28 (0.13)  85.54 (0.30)  98.51 (0.10)  93.77 (0.25) | 74.02 (0.10)  66.81 (0.09)  79.23 (0.51)  71.56 (0.38)
CGIB 94.27 (047) 86.88 (0.56)  98.80 (0.04) 94.69 (0.16) | 74.59 (0.88) 67.65 (1.07) 81.14 (1.20)  72.47 (0.16)
CGIBcont 93.78 (0.62)  86.36 (0.75) 98.84 (0.31) 94.52 (038) | 75.08 (0.34) 67.31(0.82) 81.51 (0.67) 74.29 (0.14)

Performance on Drug-Drug Interaction

Improvement gap is larger in inductive setting
** By detecting function group that is basic in nature -
helps generalization

22



EXP E RI IVI E NTS SENSITIVITY ANALYSIS

—o— CGIB CGIBcont
Absorption Emission
19.54 26.0 1
19.01 25.51
0 25.01 /.
w 18.54 g /.\\/
s . 24.5 A C
24.0
17.5 23.5
17.0 | | — 23.0 1 | | ‘
0.001 0.01 0.1 1.0 0.001 0.01 0.1 1.0
B B

Sensitivity Analysis on beta

2-aminobenzoic acid 1H-indole-4-carbonitrile

G AN

£=001 £=0.01
6-amino-1H-pyrimidine-2-thione 4-hydroxy-3-methoxybenzoic acid
HN N.
Y ~ \f ),/@j
S AH A
£=001 =10 p= 001

Qualitative Analysis on beta

min ~1(Y; géﬂﬂgz) @I(gl; g(leB|g2)

. @Zontrols Trade-off btw prediction and compression

As 3 increases, Compression > Prediction

Observations

* [ = 1.0: Poor performance in general (focus on compression)

* However, the model fails to detect functional group when 3 is too small
- poor generalization

- Hence, finding an appropriate [ is crucial

Observations

* [ = 1.0 - CGIB focuses on compression

e.g., CGIB focuses an aromatic ring, which is not relevant to chemical
reactions

« [ =0.01 - CGIB focuses on prediction

e.g., CGIB focuses on external part, which generally more relevant to
chemical reactions



EXPE RI IVI E NTS ABLATION STUDIES

—0— CGIB CGIBcont
Absorption Emission
20.01 26.0
19.5 1 25.51
19.0 25.0
L
g 18.5 24.5 -
o
18.0 24.01
17.51 23.51
17.0 : : — 23.0 . . |
1 2 3 4 1 2 3 4

1. Without IB - min
2. 1(GLg: 6V - min
3.1(G¢i8: G4 6%) > min
4-1(9129(1:13|g2) - min

1(Y; 6%, G%) (Same as CIGIN)

1(Y; G5, G%) + 1(Gis; G1) (Same as VGIB)
1(Y; G&, 6°) + 1(Gtis; 61 6%)

1(Y; Gtig, G*) + 1(G"; GG181G>) (Same as CGIB)

Observations

Considering conditional Ml is the key for success in relational learning
A naive consideration of G! and G2 rather performs worse than
considering G only

24



EX P E RI M E NTS QUALITATIVE ANALYSIS

(a) Ordinary solvents
o}
Q HO
~
(b) Liquid oxygen solvent

Observations

(a) Chromophore (G1) interact with ordinary solvents (G?)
Focus on external parts = Aligns with domain knowledge

(b) Chromophore (G1) interact with liquid oxygen solvents (G?)
Focus on all parts = Aligns with domain knowledge

25



EX P E RI M E NTS QUALITATIVE ANALYSIS

(c) Ethanol, THF, 1-Hexanol, 1-Butanol Benzene
Observations
\/0 (c) Chromophore (G!) interacts with various solvents (G2)
// N\ (e.g., Trans-ethyl p-(dimethylamino) cinnamate (EDAC))
Detected parts in chromophore depend on the polarity of solvent
Oxygen-Carbon Nitrogen-Carbon - Case 1: High polarity solvent (Ethanol, THF, 1-hexanol, 1-butanol)

- Interact with high polarity solvent

(d) Polarity of the structure

- Case 2: Low polarity solvent (Benzene solvent)
Structure with low polarity is detected (e.g., Nitrogen-Carbon)
- Interact with low polarity solvent

Detected structure of Chromophore (G') depends on the paired solvents (G?)

Oxygen-Carbon Nitrogen-Carbon
(High Polarity) (Low Polarity)
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CONCLUSION

Proposed a method for tackling relation learning tasks, which are crucial for scientific discovery
- Based on Conditional Information Bottleneck

It is crucial to consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1
(Chromophore)
+ i.e., Make use of G2 when detecting G¢;g of G

CGIB has interpretability, which makes it highly practical

Interaction

C———)

o

Solute or Chromophore Solvent

~J
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[Full Paper] https://openreview.net/forum?id=5hz3GV4IPq

[Source Code] https://github.com/Namkyeong/CGIB

[Author Email] namkyeong96@kaist.ac.kr
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