

Yunhak Oh*, Sukwon Yun*, Dongmin Hyun, Sein Kim, and Chanyoung Park⁺

* Both authors contributed equally to this research † Corresponding author

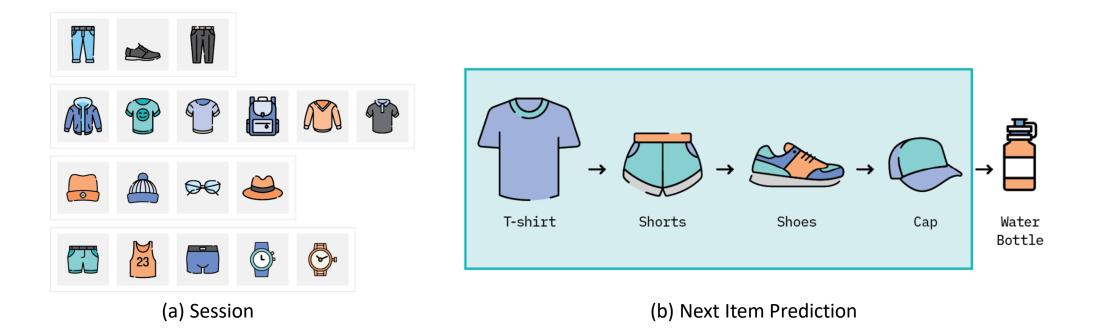
CONTENTS

- Background
- Motivation
- MUSE: Music Recommender System with Shuffle Play Recommendation Enhancement
- Experiments
- Conclusion

BACKGROUND

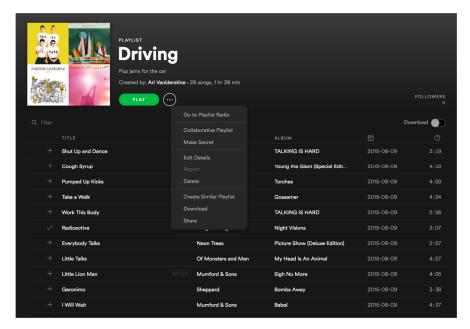
Session-based Recommendation (SBR)

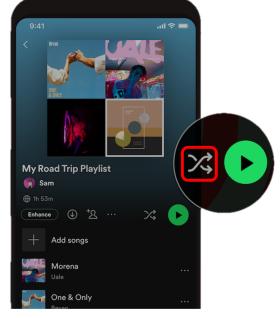
- Anonymous (No user profiles) & Short
- Solely based on a user's interactions in an ongoing session



MOTIVATION SHUFFLE PLAY

- Recommender Systems (RS) have become indispensable in music streaming services
 - Personalize playlists
 - Facilitate the serendipitous discovery of new music
- Unique Challenge in Music Domain: Shuffle Play





(b) Shuffle Play

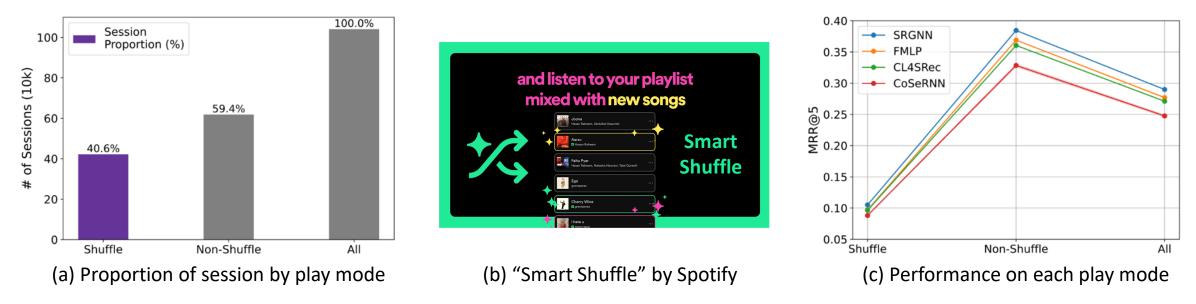
(a) Playlist

Image Credit: https://developer.spotify.com/documentation/web-api/concepts/playlists

https://newsroom.spotify.com/2022-08-01/spotify-is-launching-individual-buttons-for-shuffle-and-play-for-spotify-premium-users-so-its-simpler-to-choose-the-way-you-listen/spotify-for-spotify-premium-users-so-its-simpler-to-choose-the-way-you-listen/spotify-for-spotify

MOTIVATION WHY SHUFFLE PLAY

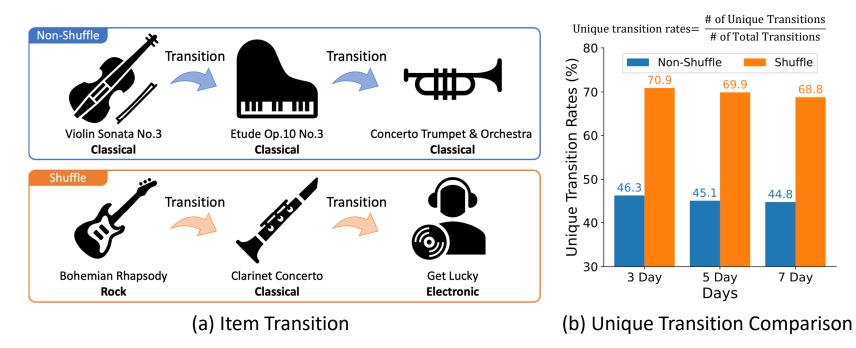
- Users enjoy Shuffle Play
 - Substantial proportion (i.e., 40.6%)
 - Mitigate listening monotony [2]
 - Present serendipity in the user's auditory journey [2]
 - Spotify announced new play mode: <u>Smart Shuffle</u>
- Existing methods performed **poorly** in **shuffle play** sessions



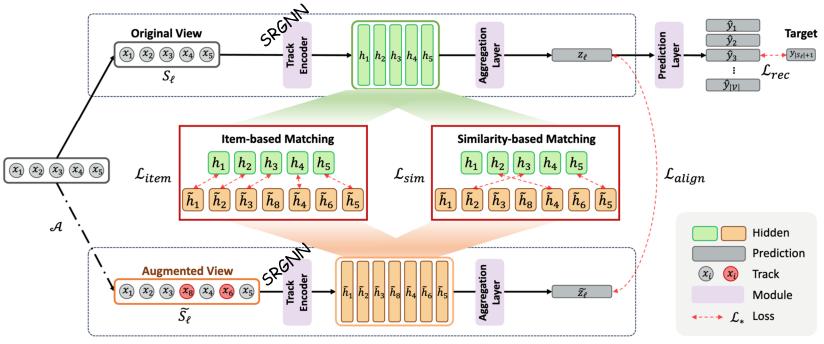
[2] T. W. Leong, F. Vetere, and S. Howard. The serendipity shuffle, In Proceedings of the 17th Australia conference on Computer-Human Interaction: Citizens Online: Considerations for Today and the Future. 2015.

MOTIVATION UNIQUE TRANSITION

- Why Shuffle Play is a bottleneck?
 - High Unique Transition Rate
 - <u>1.5 times</u> higher than non-shuffle play
 - transition between tracks that appears only once
 - Track sequences could shift dramatically in shuffle play session



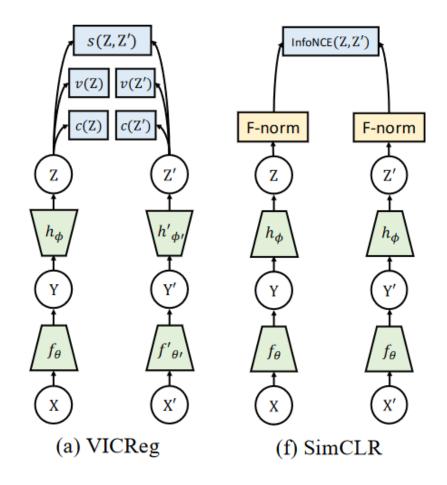
- To tackle the inherent challenges posed by shuffle play session
 - Transition-based Augmentation (Shuffle play session) / Reordering-based Augmentation (Non-shuffle play session)
 - Fine-grained matching strategies
 - Item-based matching
 - Similarity-based matching



Overall Architecture of MUSE

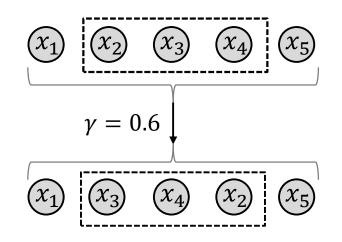
Self-supervised Learning (SSL)

- Joint Embedding Architecture with Augmentation
- Maximize the agreement between different views
- To prevent collapse
 - Contrastive methods (e.g., SimCLR, SimSiam, BYOL)
 - Information maximization method (e.g., Barlow Twins)
 - Regularization (e.g., VICReg [1])



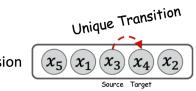
Self-Supervised Learning Frameworks

- Transition-based Augmentation
 - Enrich the sequential information in a given shuffle play session
 - Mitigate the <u>unique transition</u> patterns inherent in shuffle play sessions



Reordering-based augmentation

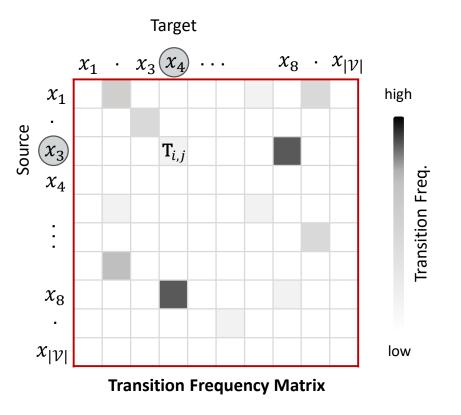
Shuffle play session



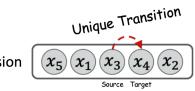
Transition-based Augmentation

- Enrich the sequential information in a given shuffle play session
- Mitigate the unique transition patterns inherent in shuffle play sessions
 - Consider the transition frequency between items from all the sessions

$$\mathbf{T}_{i,j} = \sum_{\ell=1}^{N} \sum_{t=1}^{|S_{\ell}|-1} \mathbb{1}([x_t, x_{t+1}] = [x_i, x_j]), \quad \forall i, j \le |\mathcal{V}|$$

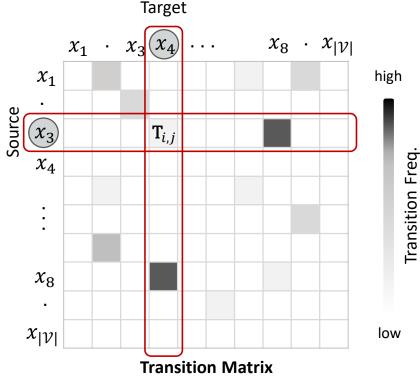


Shuffle play session



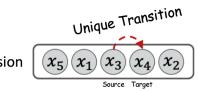
Transition-based Augmentation

- Enrich the sequential information in a given shuffle play session
- Mitigate the unique transition patterns inherent in shuffle play sessions
 - Consider the transition frequency between items from all the sessions
 - •

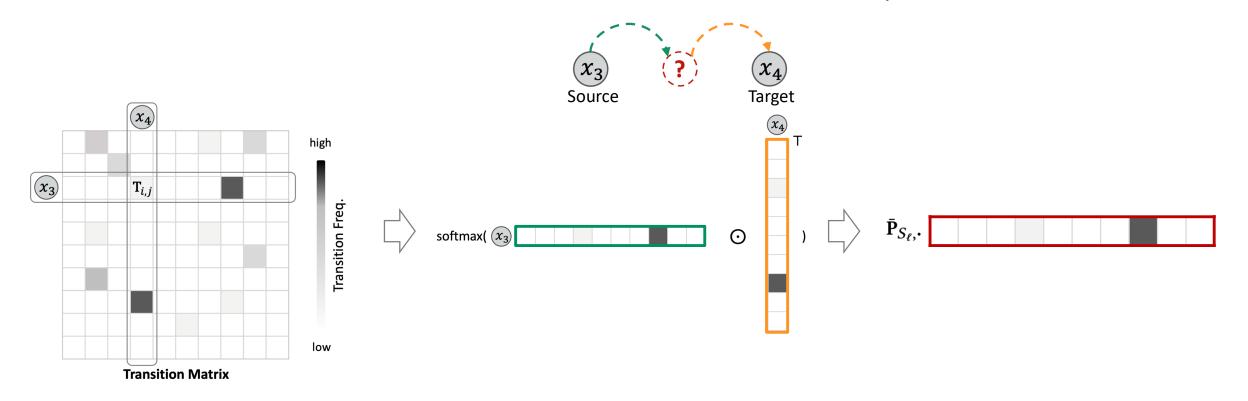


Column-wise Normalization - transition matrix in terms of the probability distribution matrix $\bar{\mathbf{T}}_{i,\cdot} = \frac{\mathbf{T}_{i,\cdot}}{\sum_{j=1}^{|\mathcal{V}|} \mathbf{T}_{i,j}}, \quad \forall i \leq |\mathcal{V}|, \quad \bar{\mathbf{T}}_{\cdot,j} = \frac{\mathbf{T}_{\cdot,j}}{\sum_{i=1}^{|\mathcal{V}|} \mathbf{T}_{i,j}}, \quad \forall j \leq |\mathcal{V}|$

Shuffle play session

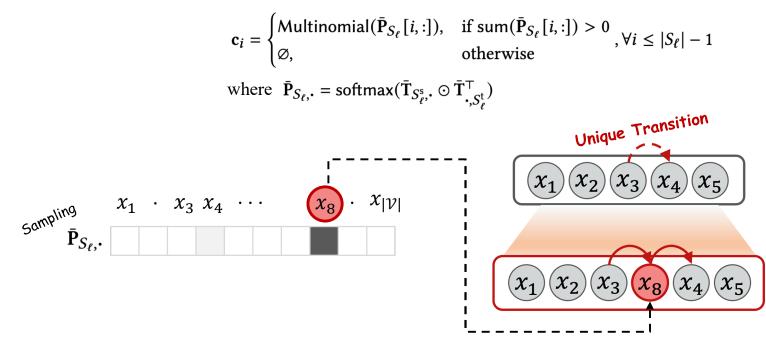


- Transition-based Augmentation
 - Enrich the sequential information in a given shuffle play session
 - Mitigate the unique transition patterns inherent in shuffle play sessions
 - Consider its <u>back-and-forth context</u>, i.e., source and target $\bar{\mathbf{P}}_{S_{\ell},\cdot} = \operatorname{softmax}(\bar{\mathbf{T}}_{S_{\ell}^{s},\cdot} \odot \bar{\mathbf{T}}_{\cdot,S_{\ell}^{t}}^{\top})$



Transition-based Augmentation

- Enrich the sequential information in a given shuffle play session
- Mitigate the unique transition patterns inherent in shuffle play sessions
 - Considering its back-and-forth context (i.e., source and target)
 - Insert frequently appearing transitions that could potentially exist in a session



Item-based Matching

- To make the encoder to be invariant to augmentations
 - Align the two views' hidden representations derived from the same items

Similarity-based Matching

- To supplement item-based matching
 - Align representations of similar items
 - Nearest Neighbor based on *l*2-distance

Regularization

- To avoid the representation collapse problem
 - inspired by VICReg

$$\mathcal{L}_{sim} = \sum_{(\mathbf{h}_i, \mathsf{NN}(\mathbf{h}_i, \tilde{\mathbf{H}}_\ell)) \in \mathcal{P}^{\kappa}} \|\mathbf{h}_i - \mathsf{NN}(\mathbf{h}_i, \tilde{\mathbf{H}}_\ell)\|^2 + \sum_{(\tilde{\mathbf{h}}_i, \mathsf{NN}(\tilde{\mathbf{h}}_i, \mathbf{H}_\ell)) \in \tilde{\mathcal{P}}^{\kappa}} \|\tilde{\mathbf{h}}_i - \mathsf{NN}(\tilde{\mathbf{h}}_i, \mathbf{H}_\ell)\|^2$$

where $\mathcal{P}(\mathbf{H}_\ell, \tilde{\mathbf{H}}_\ell) = \{(\mathbf{h}_i, \mathsf{NN}(\mathbf{h}_i, \tilde{\mathbf{H}}_\ell)) | \mathbf{h}_i \in \mathbf{H}_\ell\}$

$$\mathcal{L}_{VICReg} = \lambda \cdot s(\mathbf{H}_{\ell}, \tilde{\mathbf{H}}_{\ell}) + \mu[v(\mathbf{H}_{\ell}) + v(\tilde{\mathbf{H}}_{\ell})] + v[c(\mathbf{H}_{\ell}) + c(\tilde{\mathbf{H}}_{\ell})]$$

$$\mathcal{L}_{item} \underbrace{\begin{smallmatrix} \text{Item-based Matching} \\ h_1 \\ \tilde{h}_2 \\ \tilde{h}_3 \\ \tilde{h}_3 \\ \tilde{h}_8 \\ \tilde{h}_4 \\ \tilde{h}_6 \\ \tilde{h}_5 \\ \tilde{h}_5 \\ \tilde{h}_5 \\ \tilde{h}_5 \\ \tilde{h}_1 \\ \tilde{h}_2 \\ \tilde{h}_3 \\ \tilde{h}_8 \\ \tilde{h}_4 \\ \tilde{h}_6 \\ \tilde{h}_5 \\ \tilde{h}_5 \\ \tilde{h}_5 \\ \tilde{h}_1 \\ \tilde{h}_2 \\ \tilde{h}_3 \\ \tilde{h}_8 \\ \tilde{h}_4 \\ \tilde{h}_6 \\ \tilde{h}_5 \\ \tilde{h}_5 \\ \tilde{h}_5 \\ \tilde{h}_1 \\ \tilde{h}_2 \\ \tilde{h}_3 \\ \tilde{h}_8 \\ \tilde{h}_4 \\ \tilde{h}_6 \\ \tilde{h}_5 \\$$

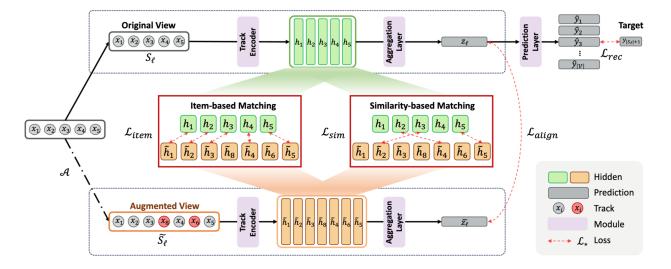
 $\mathcal{L}_{matching} = \mathcal{L}_{item} + \mathcal{L}_{sim} + \mathcal{L}_{VICReg}$

$$\mathcal{L}_{item} = \frac{1}{|\mathbf{I}_{\ell}|} \sum_{x_t \in \mathbf{I}_{\ell}} \sum_{x_k \in \tilde{\mathbf{I}}_{\ell}} \mathbb{1}(x_t = x_k) \|\mathbf{h}_t - \tilde{\mathbf{h}}_k\|^2$$

- Aggregation Layer
 - Local embedding: $\mathbf{z}_{\ell}^{(\text{local})} = \mathbf{h}_{|S_{\ell}|}$
 - Global embedding (soft-attention): $\mathbf{z}_{\ell}^{(\text{global})} = \sum_{i}^{|S_{\ell}|} \beta_{i}\mathbf{h}_{i}, \ \beta_{i} = \mathbf{W}_{1}^{T}\sigma(\mathbf{W}_{2}\mathbf{h}_{i} + \mathbf{W}_{3}\mathbf{h}_{|S_{\ell}|} + \mathbf{b})$ Alignment of Self-Supervised Learning $\mathcal{L}_{align} = \lambda \cdot s(\mathbf{z}_{\ell}, \tilde{\mathbf{z}}_{\ell}) + \mu[v(\mathbf{z}_{\ell}) + v(\tilde{\mathbf{z}}_{\ell})] + v[c(\mathbf{z}_{\ell}) + c(\tilde{\mathbf{z}}_{\ell})]$
- Prediction Layer
 - To recommend top-*K* tracks for each session $\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{z}_{\ell}^T \mathbf{e}_i)$

$$\mathcal{L}_{rec} = -\sum_{i=1}^{|\mathcal{V}|} \mathbf{y}_i \log\left(\hat{\mathbf{y}}_i\right) + (1 - \mathbf{y}_i) \log\left(1 - \hat{\mathbf{y}}_i\right)$$

111



$$\mathcal{L}_{\text{final}} = \alpha \mathcal{L}_{matching} + (1 - \alpha) \mathcal{L}_{align} + \mathcal{L}_{rec}$$

EXPERIMENTS SETTING

- Dataset: Music Streaming Sessions Dataset from Spotify [3]
 - 160 million listening sessions with 20 billion plays, accompanied by user actions
 - Select data belonging to a few days as adopted in a conventional work [4]
 - used partial data due to its large size

Preprocessing

- Filter out non-premium users, cold-start items (frequency ≤ 5), and short session (len(session) ≤ 1)
- $S = [x_1, x_2, \dots, x_{|S|}, x_{|S|+1}] \rightarrow ([x_1], x_2), ([x_1, x_2], x_3), \dots, ([x_1, x_2, \dots, x_{|S|}], x_{|S|+1})$
 - where ([*],·) denotes a input squence * and target · (target must be listened by the user)
 - Especially, input in Shuffle play must be listened by the user

• $S_{\ell}^{(Shuffle)} = [x_1, x_2, x_3, x_4, x_5] \rightarrow ([x_1], x_3), ([x_1, x_3], x_5)$

[listen, skip, listen, skip, listen]

Statistics	MSSD-3d	MSSD-5d	MSSD-7d
# of plays	11,858,262	16,701,958	19,366,448
# of shuffle play sessions	301,814	422,221	501,875
# of non-shuffle play sessions	442,726	618,701	713,300
# of training sessions	613,308	909,818	1,061,274
# of test sessions	131,232	131,104	153,901
# of tracks	199,177	253,693	280,079
Average length	15.93	16.05	15.94

(b) Statistics of datasets

August 2018

EXPERIMENTS OVERALL PERFORMANCE

- MUSE achieves state-of-the-art performance in the real-world, large-scale dataset (i.e., MSSD)
 - MUSE significantly outperforms backbone, i.e., SRGNN, due to SSL framework with transition-based augmentation
 - MUSE significantly surpasses other SSL approaches due to fine-grained matching strategies
- Graph-based methods, e.g., SRGNN and GCSAN, show relatively high performance
 - Utilize the transition between tracks by constructing graphs
- CoSeRNN deteriorate due to the dependence on contextual information which is exclusive
 - e.g., device type, time since last session

SBR S	Setting	Atte	ntion	Gra	aph	SS	SL	Music	Ours		
Dataset	Metric	NARM	SASRec	SRGNN	GCSAN	CL4SRec	DuoRec	CoSeRNN	MUSE	$\Delta_{Backbone}$	Δ_{SOTA}
	R@5	0.3394 (0.0016)	0.3350 (0.0017)	0.3529 (0.0010)	$\frac{0.3562}{(0.0012)}$	0.3352 (0.0016)	0.3378 (0.0020)	0.3159 (0.0020)	0.3636* (0.0005)	3.03%	2.08%
	R@10	0.3941 (0.0032)	0.3891 (0.0021)	0.4040 (0.0020)	$\frac{0.4065}{(0.0015)}$	0.3886 (0.0019)	0.3926 (0.0026)	0.3747 (0.0012)	0.4153* (0.0008)	2.80%	2.16%
MSSD	M@5	0.2764 (0.0005)	0.2701 (0.0014)	0.2899 (0.0007)	<u>0.2939</u> (0.0011)	0.2711 (0.0010)	0.2717 (0.0015)	0.2476 (0.0023)	0.2993* (0.0006)	3.24%	1.84%
5d	M@10	0.2836 (0.0007)	0.2772 (0.0013)	0.2967 (0.0007)	$\frac{0.3006}{(0.0011)}$	0.2781 (0.0010)	0.2790 (0.0015)	0.2554 (0.0022)	0.3062* (0.0005)	3.20%	1.86%
	N@5	0.2920 (0.0008)	0.2863 (0.0014)	0.3056 (0.0006)	$\frac{0.3094}{(0.0011)}$	0.2870 (0.0011)	0.2882 (0.0016)	0.2646 (0.0022)	0.3154* (0.0005)	3.21%	1.94%
	N@10	0.3096 (0.0012)	0.3037 (0.0013)	0.3221 (0.0008)	$\frac{0.3257}{(0.0011)}$	0.3042 (0.0011)	0.3059 (0.00118)	0.2836 (0.0019)	0.3320* (0.0004)	3.07%	1.93%

* indicates a paired t-test results with p < 0.01

EXPERIMENTS OVERALL PERFORMANCE

- MUSE achieves state-of-the-art performance in the real-world, large-scale dataset (i.e., MSSD)
 - MUSE significantly outperforms backbone, i.e., SRGNN, due to SSL framework with transition-based augmentation
 - MUSE significantly surpasses other SSL approaches due to <u>fine-grained matching strategies</u>
- Graph-based methods, e.g., SRGNN and GCSAN, show relatively high performance
 - Utilize the transition between tracks by constructing graphs
- CoSeRNN deteriorate due to the dependence on contextual information which is exclusive
 - e.g., device type, time since last session

SBR S	Setting	Atte	ntion	Gra	aph	SS	SL	Music		Ours	
Dataset	Metric	NARM	SASRec	SRGNN	GCSAN	CL4SRec	DuoRec	CoSeRNN	MUSE	$\Delta_{Backbone}$	Δ_{SOTA}
	R@5	0.3394 (0.0016)	0.3350 (0.0017)	0.3529 (0.0010)	$\frac{0.3562}{(0.0012)}$	0.3352 (0.0016)	0.3378 (0.0020)	0.3159 (0.0020)	0.3636* (0.0005)	3.03%	2.08%
	R@10	0.3941 (0.0032)	0.3891 (0.0021)	0.4040 (0.0020)	$\frac{0.4065}{(0.0015)}$	0.3886 (0.0019)	0.3926 (0.0026)	0.3747 (0.0012)	0.4153* (0.0008)	2.80%	2.16%
MSSD	M@5	0.2764 (0.0005)	0.2701 (0.0014)	0.2899 (0.0007)	<u>0.2939</u> (0.0011)	0.2711 (0.0010)	0.2717 (0.0015)	0.2476 (0.0023)	0.2993* (0.0006)	3.24%	1.84%
5d	M@10	0.2836 (0.0007)	0.2772 (0.0013)	0.2967 (0.0007)	$\frac{0.3006}{(0.0011)}$	0.2781 (0.0010)	0.2790 (0.0015)	0.2554 (0.0022)	0.3062* (0.0005)	3.20%	1.86%
	N@5	0.2920 (0.0008)	0.2863 (0.0014)	0.3056 (0.0006)	$\frac{0.3094}{(0.0011)}$	0.2870 (0.0011)	0.2882 (0.0016)	0.2646 (0.0022)	0.3154* (0.0005)	3.21%	1.94%
	N@10	0.3096 (0.0012)	0.3037 (0.0013)	0.3221 (0.0008)	$\frac{0.3257}{(0.0011)}$	0.3042 (0.0011)	0.3059 (0.00118)	0.2836 (0.0019)	0.3320* (0.0004)	3.07%	1.93%

* indicates a paired t-test results with p < 0.01

EXPERIMENTS OVERALL PERFORMANCE

- MUSE achieves state-of-the-art performance in the real-world, large-scale dataset (i.e., MSSD)
 - MUSE significantly outperforms backbone, i.e., SRGNN, due to SSL framework with transition-based augmentation
 - MUSE significantly surpasses other SSL approaches due to fine-grained matching strategies
- Graph-based methods, e.g., SRGNN and GCSAN, show relatively high performance
 - Utilize the transition between tracks by constructing graphs
- CoSeRNN deteriorate due to the dependence on contextual information which is exclusive

SBR S	Setting	Atte	ntion	Gra	aph	SS	SL	Music	Ours			
Dataset	Metric	NARM	SASRec	SRGNN	GCSAN	CL4SRec	DuoRec	CoSeRNN	MUSE	$\Delta_{Backbone}$	Δ_{SOTA}	
	R@5	0.3394 (0.0016)	0.3350 (0.0017)	0.3529 (0.0010)	$\frac{0.3562}{(0.0012)}$	0.3352 (0.0016)	0.3378 (0.0020)	0.3159 (0.0020)	0.3636* (0.0005)	3.03%	2.08%	
	R@10	0.3941 (0.0032)	0.3891 (0.0021)	0.4040 (0.0020)	$\frac{0.4065}{(0.0015)}$	0.3886 (0.0019)	0.3926 (0.0026)	0.3747 (0.0012)	0.4153* (0.0008)	2.80%	2.16%	
MSSD	M@5	0.2764 (0.0005)	0.2701 (0.0014)	0.2899 (0.0007)	<u>0.2939</u> (0.0011)	0.2711 (0.0010)	0.2717 (0.0015)	0.2476 (0.0023)	0.2993* (0.0006)	3.24%	1.84%	
5d	M@10	0.2836 (0.0007)	0.2772 (0.0013)	0.2967 (0.0007)	$\frac{0.3006}{(0.0011)}$	0.2781 (0.0010)	0.2790 (0.0015)	0.2554 (0.0022)	0.3062* (0.0005)	3.20%	1.86%	
	N@5	0.2920 (0.0008)	0.2863 (0.0014)	0.3056 (0.0006)	$\frac{0.3094}{(0.0011)}$	0.2870 (0.0011)	0.2882 (0.0016)	0.2646 (0.0022)	0.3154* (0.0005)	3.21%	1.94%	
	N@10	0.3096 (0.0012)	0.3037 (0.0013)	0.3221 (0.0008)	$\frac{0.3257}{(0.0011)}$	0.3042	0.3059 (0.00118)	0.2836 (0.0019)	0.3320* (0.0004)	3.07%	1.93%	

• e.g., device type, time since last session

EXPERIMENTS FINE-GRAINED PERFORMANCE

- MUSE substantially bolsters the performance on the shuffle play sessions
 - Transition-based augmentation and fine-grained matching strategies are beneficial to shuffle play sessions
- MUSE boosts the performance on non-shuffle play sessions as well
 - Even though our framework is designed for shuffle play session
- In contrast, the state-of-the-art baseline, GCSAN, is biased towards non-shuffle play session

Set	ting	Rec. SBR	SSL SBR	Graph-b	ased SBR	Ours	Relativ	ve Gap	Set	ting	Rec. SBR	SSL SBR	Graph-b	Graph-based SBR		Relativ	e Gap		
Dataset	Metric	FMLP	CL4SRec	SRGNN	GCSAN	MUSE	$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		Dataset	Metric	FMLP	CL4SRec	SRGNN	GCSAN	MUSE	$\Delta_{Backbon}$	$_{e}\Delta_{SOTA}$
	R@10	0.2256 (0.0009)	0.2297 (0.0025)	<u>0.2304</u> (0.0024)	0.2283 (0.0020)	0.2401* (0.0015)	4.21%	5.17%	MSSD 3d	R@10	0.4868 (0.0032)	0.4776 (0.0029)	0.4885 (0.0029)	<u>0.4963</u> (0.0038)	0.5034* (0.0037)	3.05%	1.43%		
MSSD 3d	M@10	0.1071 (0.0008)	0.1080 (0.0014)	$\frac{0.1140}{(0.0010)}$	0.1137 (0.0013)	0.1181* (0.0008)	3.60%	3.87%		M@10	0.3728 (0.0026)	0.3620 (0.0032)	0.3841 (0.0034)	$\frac{0.3943}{(0.0024)}$	0.3992* (0.0030)	3.93%	1.24%		
3d	N@10	0.1345 (0.0007)	0.1362 (0.0016)	$\frac{0.1410}{(0.0013)}$	0.1402 (0.0014)	0.1464* (0.0009)	3.83%	4.42%		N@10	0.4001 (0.0028)	0.3897 (0.0028)	0.4091 (0.0031)	$\frac{0.4188}{(0.0026)}$	0.4242* (0.0031)	3.69%	1.29%		
	R@10	0.2265 (0.0011)	0.2250 (0.0015)	<u>0.2330</u> (0.0023)	0.2295 (0.0017)	0.2400* (0.0012)	3.00%	4.58%	3.79% MSSD 5d	R@10	0.4872 (0.0017)	0.4724 (0.0021)	0.4916 (0.0025)	<u>0.4972</u> (0.0014)	0.5051* (0.0007)	2.75%	1.59%		
MSSD 5d	M@10	0.1069 (0.0010)	0.1061 (0.0008)	<u>0.1146</u> (0.0010)	0.1136 (0.0010)	0.1179* (0.0004)	2.88%	3.79%		M@10	0.3751 (0.0006)	0.3662 (0.0008)	0.3899 (0.0007)	<u>0.3963</u> (0.0008)	0.4026* (0.0008)	3.26%	1.59%		
54	N@10	0.1345 (0.0008)	0.1337 (0.0007)	$\frac{0.1420}{(0.0011)}$	0.1404 (0.0010)	0.1462* (0.0003)	2.96%	4.13%		N@10	0.4019 (0.0005)	0.3916 (0.0011)	0.4143 (0.0010)	$\frac{0.4205}{(0.0010)}$	0.4272* (0.0007)	3.11%	1.59%		

(a) Performance on Shuffle Play Session

(b) Performance on Non-Shuffle Play Session

EXPERIMENTS FINE-GRAINED PERFORMANCE

- MUSE substantially bolsters the performance on the shuffle play sessions
 - Transition-based augmentation and fine-grained matching strategies are beneficial to shuffle play sessions
- MUSE boosts the performance on non-shuffle play sessions as well
 - Even though our framework is designed for shuffle play session
- In contrast, the state-of-the-art baseline, GCSAN, is biased towards non-shuffle play session

Set	ting	Rec. SBR	SSL SBR	Graph-ba	ased SBR	Ours	Relative Gap		Setting		Rec. SBR	SSL SBR	Graph-based SBR		Ours	Relativ	re Gap
Dataset	Metric	FMLP	CL4SRec	SRGNN	GCSAN	MUSE	$\Delta_{Backbon}$	$\Delta_{Backbone} \Delta_{SOTA}$		Metric	FMLP	CL4SRec	SRGNN	GCSAN	MUSE	$\Delta_{Backbon}$	$_{Le}\Delta_{SOTA}$
	R@10	0.2256 (0.0009)	0.2297 (0.0025)	<u>0.2304</u> (0.0024)	0.2283 (0.0020)	0.2401* (0.0015)	4.21%	5.17%		R@10	0.4868 (0.0032)	0.4776 (0.0029)	0.4885 (0.0029)	<u>0.4963</u> (0.0038)	0.5034* (0.0037)	3.05%	1.43%
MSSD 3d	M@10	0.1071 (0.0008)	0.1080 (0.0014)	<u>0.1140</u> (0.0010)	0.1137 (0.0013)	0.1181* (0.0008)	3.60%	3.87%	3d	M@10	0.3728 (0.0026)	0.3620 (0.0032)	0.3841 (0.0034)	<u>0.3943</u> (0.0024)	0.3992* (0.0030)	3.93%	1.24%
	N@10	0.1345 (0.0007)	0.1362 (0.0016)	$\frac{0.1410}{(0.0013)}$	0.1402 (0.0014)	0.1464* (0.0009)	3.83%	4.42%		N@10	0.4001 (0.0028)	0.3897 (0.0028)	0.4091 (0.0031)	$\frac{0.4188}{(0.0026)}$	0.4242* (0.0031)	3.69%	1.29%
	R@10	0.2265 (0.0011)	0.2250 (0.0015)	<u>0.2330</u> (0.0023)	0.2295 (0.0017)	0.2400* (0.0012)	3.00%	4.58%		R@10	0.4872 (0.0017)	0.4724 (0.0021)	0.4916 (0.0025)	<u>0.4972</u> (0.0014)	0.5051* (0.0007)	2.75%	1.59%
MSSD 5d	M@10	0.1069 (0.0010)	0.1061 (0.0008)	<u>0.1146</u> (0.0010)	0.1136 (0.0010)	0.1179* (0.0004)	2.88%	3.79%	3.79% MSSD 5d	M@10	0.3751 (0.0006)	0.3662 (0.0008)	0.3899 (0.0007)	<u>0.3963</u> (0.0008)	0.4026* (0.0008)	3.26%	1.59%
Ju	N@10	0.1345 (0.0008)	0.1337 (0.0007)	$\frac{0.1420}{(0.0011)}$	0.1404 (0.0010)	0.1462* (0.0003)	2.96%	4.13%	N@10	0.4019 (0.0005)	0.3916 (0.0011)	0.4143 (0.0010)	<u>0.4205</u> (0.0010)	0.4272* (0.0007)	3.11%	1.59%	

(a) Performance on Shuffle Play Session

(b) Performance on Non-Shuffle Play Session

EXPERIMENTS FINE-GRAINED PERFORMANCE

- MUSE substantially bolsters the performance on the shuffle play sessions
 - Transition-based augmentation and fine-grained matching strategies are beneficial to shuffle play sessions
- MUSE boosts the performance on non-shuffle play sessions as well
 - Even though our framework is designed for shuffle play session

In contrast, the state-of-the-art baseline, GCSAN, is biased towards non-shuffle play session

Set	ting	Rec. SBR	SSL SBR	Graph-b	ased SBR	Ours	Relative Gap		Setting		Rec. SBR	SSL SBR	Graph-based SBR		Ours	Relativ	e Gap														
Dataset	Metric	FMLP	CL4SRec	SRGNN	GCSAN	MUSE	$\Delta_{Backbon}$	$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		$\Delta_{Backbone} \Delta_{SOTA}$		Metric	FMLP	CL4SRec	SRGNN	GCSAN	MUSE	$\Delta_{Backbon}$	$e \Delta_{SOTA}$
	R@10	0.2256 (0.0009)	0.2297 (0.0025)	$\frac{0.2304}{(0.0024)}$	0.2283 (0.0020)	0.2401* (0.0015)	4.21% 5	5.17%	MSSD 3d	R@10	0.4868 (0.0032)	0.4776 (0.0029)	0.4885 (0.0029)	<u>0.4963</u> (0.0038)	0.5034* (0.0037)	3.05%	1.43%														
MSSD 3d	M@10	0.1071 (0.0008)	0.1080 (0.0014)	$\frac{0.1140}{(0.0010)}$	0.1137 (0.0013)	0.1181* (0.0008)	3.60%			M@10	0.3728 (0.0026)	0.3620 (0.0032)	0.3841 (0.0034)	<u>0.3943</u> (0.0024)	0.3992* (0.0030)	3.93%	1.24%														
3d	N@10	0.1345 (0.0007)	0.1362 (0.0016)	$\frac{0.1410}{(0.0013)}$	0.1402 (0.0014)	0.1464* (0.0009)	3.83%			N@10	0.4001 (0.0028)	0.3897 (0.0028)	0.4091 (0.0031)	$\frac{0.4188}{(0.0026)}$	0.4242* (0.0031)	3.69%	1.29%														
	R@10	0.2265 (0.0011)	0.2250 (0.0015)	<u>0.2330</u> (0.0023)	0.2295 (0.0017)	0.2400* (0.0012)	3.00%	4.58%		R@10	0.4872 (0.0017)	0.4724 (0.0021)	0.4916 (0.0025)	<u>0.4972</u> (0.0014)	0.5051* (0.0007)	2.75%	1.59%														
MSSD 5d	M@10	0.1069 (0.0010)	0.1061 (0.0008)	$\frac{0.1146}{(0.0010)}$	0.1136 (0.0010)	0.1179* (0.0004)	2.88%	3.79%	MSSD 5d	M@10	0.3751 (0.0006)	0.3662 (0.0008)	0.3899 (0.0007)	<u>0.3963</u> (0.0008)	0.4026* (0.0008)	3.26%	1.59%														
54	N@10	0.1345 (0.0008)	0.1337 (0.0007)	$\frac{0.1420}{(0.0011)}$	0.1404 (0.0010)	0.1462* (0.0003)	2.96%	4.13%		N@10	0.4019 (0.0005)	0.3916 (0.0011)	0.4143 (0.0010)	<u>0.4205</u> (0.0010)	0.4272* (0.0007)	3.11%	1.59%														

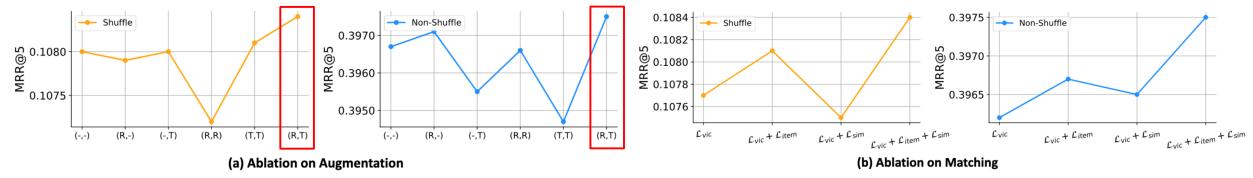
(a) Performance on Shuffle Play Session

(b) Performance on Non-Shuffle Play Session

EXPERIMENTS ABLATION STUDY

Ablation on Augmentation

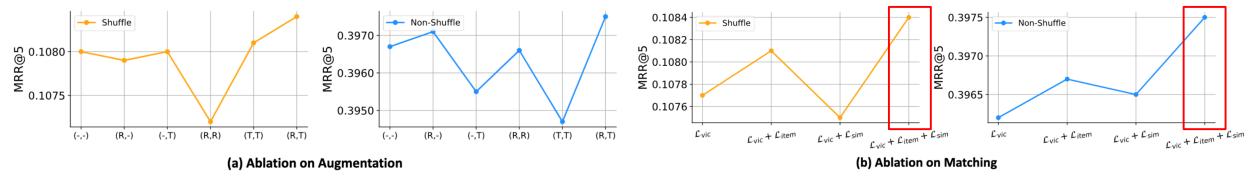
- Non-shuffle play sessions benefit from <u>re-ordering-based</u> augmentation
 - Mimic the shuffle play session environment
- Shuffle play sessions especially benefit from transition-based augmentation
 - Mitigate the unique transition pattern inherent in shuffle play session
- Ablation on Matching
 - <u>Item-based</u> matching facilitates the <u>alignment</u> of the track embeddings of the identical items between two views
 - <u>Similarity-based</u> matching <u>complements</u> item-based matching by considering the similarity of track representations



⁽Augmentation to Non-shuffle play, Augmentation to Shuffle play)

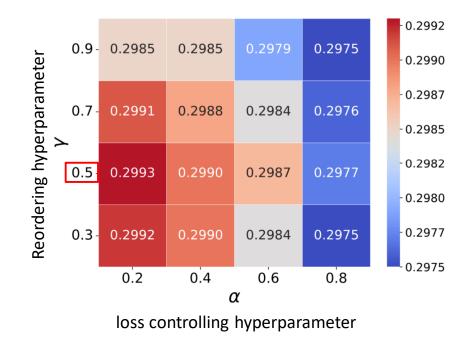
EXPERIMENTS ABLATION STUDY

- Ablation on Augmentation
 - <u>Non-shuffle</u> play sessions benefit from <u>re-ordering-based</u> augmentation
 - Mimic the shuffle play session environment
 - <u>Shuffle</u> play sessions especially benefit from <u>transition-based</u> augmentation
 - Mitigate the unique transition pattern inherent in shuffle play session
- Ablation on Matching
 - Item-based matching facilitates the alignment of the track embeddings of the identical items between two views
 - <u>Similarity-based</u> matching <u>complements</u> item-based matching by considering the similarity of track representations



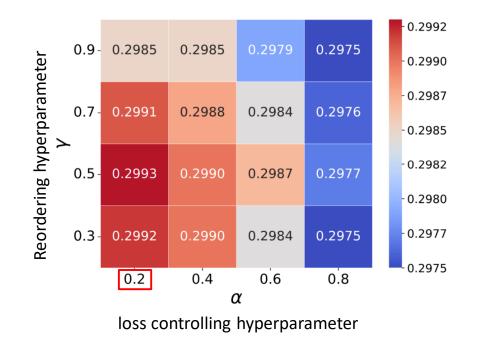
EXPERIMENTS SENSITIVITY ANALYSIS

- Moderate reordering hyperparameter γ (i.e., 0.5) is advantageous
 - Excessive reordering (i.e., high γ) could hamper the original session's semantic
 - Too little reordering (i.e., low γ) might hinder the augmentation's potential for enhancing generalizability
- Low loss controlling hyperparameter α , (i.e., 0.2) is advantageous $\mathcal{L}_{\text{final}} = \alpha \mathcal{L}_{matching} + (1 \alpha) \mathcal{L}_{align} + \mathcal{L}_{rec}$
 - this choice acts effectively as a regularizer, contributing to the overall performance



EXPERIMENTS SENSITIVITY ANALYSIS

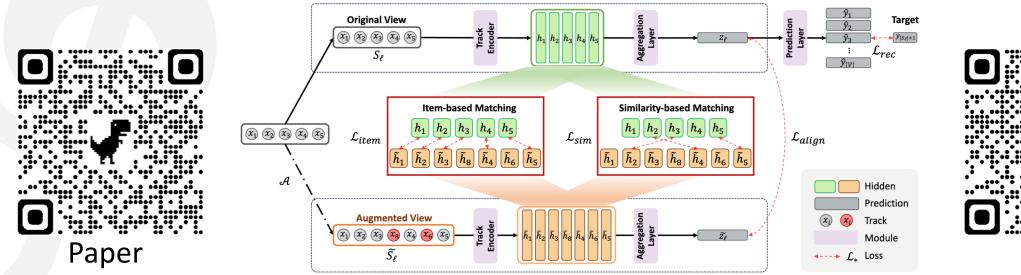
- Moderate reordering hyperparameter γ (i.e., 0.5) is advantageous
 - Excessive reordering (i.e., high γ) could hamper the original session's semantic
 - Too little reordering (i.e., low γ) might hinder the augmentation's potential for enhancing generalizability
- Low loss controlling hyperparameter α , (i.e., 0.2) is advantageous $\mathcal{L}_{\text{final}} = \alpha \mathcal{L}_{matching} + (1 \alpha) \mathcal{L}_{align} + \mathcal{L}_{rec}$
 - this choice acts effectively as a regularizer, contributing to the overall performance

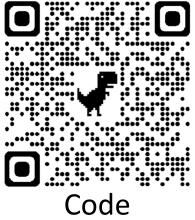


CONCLUSION

[Full Paper] <u>https://arxiv.org/abs/2308.09649</u>
[Source Code] <u>https://github.com/yunhak0/MUSE</u>
[Author Email] <u>yunhak.oh@kaist.ac.kr</u>

- The first work that attempts to enhance prevailing shuffle-play environments in the music domain
- Transition-based augmentation
 - Mitigate the unique transition pattern inherent in shuffle play session
- Fine-grained matching strategies: Item- and Similarity-based Matching
 - Identical items and similar items between the two views to be close in the embedding space
- Demonstrate the superiority of MUSE in a real-world music streaming dataset

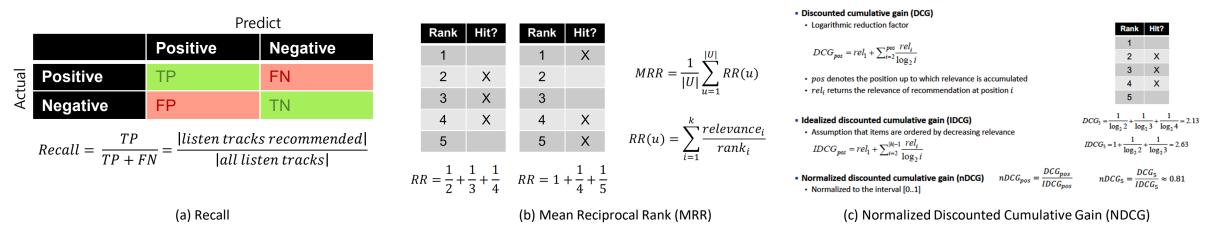




Appendix

EXPERIMENTS EVALUATION PROTOCOL

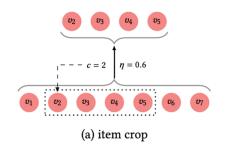
- Recall@K
 - A measure of completeness, determines the fraction of relevant items retrieved out of all relevant items
- Mean Reciprocal Rank (MRR@K)
 - Relevance based on inverse of the rank of the relevant items (hit) in a given list
- Normalized Discounted Cumulative Gain (NDCG@K)
 - Relevance applied to logarithmic reduction factor

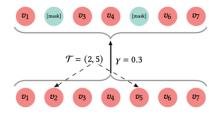


Prof. C. Park. [KSE801] Recommender Systems & Graph@KAIST

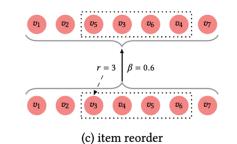
AUGMENTATION SEQUENCE DATA

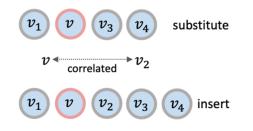
Data augmentation techniques



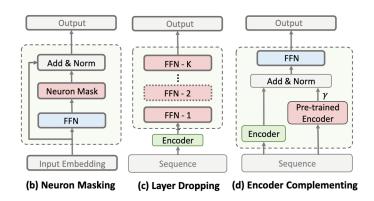


(b) item mask





Model augmentation techniques



[SIGIR21] Contrastive Learning for Sequential Recommendation (CL4SRec)

[CoRR21] Contrastive Self-supervised Sequential Recommendation with Robust Augmentation

[CoRR22] Self-supervised Learning for Sequential Recommendation with Model Augmentation