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 Session-based Recommendation (SBR)
• Anonymous (No user profiles) & Short 
• Solely based on a user’s interactions in an ongoing session

BACKGROUND

Image Credit: https://session-based-recommenders.fastforwardlabs.com/

(a) Session (b) Next Item Prediction
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 Recommender Systems (RS) have become indispensable in music streaming services
• Personalize playlists
• Facilitate the serendipitous discovery of new music

 Unique Challenge in Music Domain: Shuffle Play

MOTIVATION SHUFFLE PLAY

Image Credit: https://developer.spotify.com/documentation/web-api/concepts/playlists
https://newsroom.spotify.com/2022-08-01/spotify-is-launching-individual-buttons-for-shuffle-and-play-for-spotify-premium-users-so-its-simpler-to-choose-the-way-you-listen/

(a) Playlist (b) Shuffle Play
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 Users enjoy Shuffle Play
• Substantial proportion (i.e., 40.6%)
• Mitigate listening monotony [2]
• Present serendipity in the user’s auditory journey [2]
• Spotify announced new play mode: Smart Shuffle

 Existing methods performed poorly in shuffle play sessions

MOTIVATION WHY SHUFFLE PLAY

[2] T. W. Leong, F. Vetere, and S. Howard. The serendipity shuffle, In Proceedings of the 17th Australia conference on Computer-Human Interaction: Citizens Online: Considerations for Today and the Future. 2015.

Smart
Shuffle

(a) Proportion of session by play mode (b) “Smart Shuffle” by Spotify (c) Performance on each play mode

Smart Shuffle

https://support.spotify.com/us/article/shuffle-play/
https://support.spotify.com/us/article/shuffle-play/
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 Why Shuffle Play is a bottleneck?
• High Unique Transition Rate

• 1.5 times higher than non-shuffle play
• transition between tracks that appears only once

• Track sequences could shift dramatically in shuffle play session

MOTIVATION UNIQUE TRANSITION

(a) Item Transition (b) Unique Transition Comparison

Unique transition rates= 
# of Unique Transitions
# of Total Transitions
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 To tackle the inherent challenges posed by shuffle play session
• Transition-based Augmentation (Shuffle play session) / Reordering-based Augmentation (Non-shuffle play session)
• Fine-grained matching strategies

• Item-based matching
• Similarity-based matching

MUSE Music Recommender System with Shuffle Play Recommendation Enhancement

Overall Architecture of MUSE
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 Self-supervised Learning (SSL)
• Joint Embedding Architecture with Augmentation
• Maximize the agreement between different views
• To prevent collapse

• Contrastive methods (e.g., SimCLR, SimSiam, BYOL)
• Information maximization method (e.g., Barlow Twins)
• Regularization (e.g., VICReg [1])

MUSE 

[1] [ICLR22] VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning

Self-Supervised Learning Frameworks

Music Recommender System with Shuffle Play Recommendation Enhancement
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 Transition-based Augmentation
• Enrich the sequential information in a given shuffle play session
• Mitigate the unique transition patterns inherent in shuffle play sessions

MUSE

Shuffle play session

Music Recommender System with Shuffle Play Recommendation Enhancement
푥 푥 푥 푥 푥

푥 푥푥 푥 푥

훾 = 0.6

Reordering-based augmentation
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 Transition-based Augmentation
• Enrich the sequential information in a given shuffle play session
• Mitigate the unique transition patterns inherent in shuffle play sessions

• Consider the transition frequency between items from all the sessions

MUSE
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 Transition-based Augmentation
• Enrich the sequential information in a given shuffle play session
• Mitigate the unique transition patterns inherent in shuffle play sessions

• Consider the transition frequency between items from all the sessions
• Normalization - transition matrix in terms of the probability distribution matrix 

MUSE
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 Transition-based Augmentation
• Enrich the sequential information in a given shuffle play session
• Mitigate the unique transition patterns inherent in shuffle play sessions

• Consider its back-and-forth context, i.e., source and target

MUSE

Source Target

Music Recommender System with Shuffle Play Recommendation Enhancement
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 Transition-based Augmentation
• Enrich the sequential information in a given shuffle play session
• Mitigate the unique transition patterns inherent in shuffle play sessions

• Considering its back-and-forth context (i.e., source and target)
• Insert frequently appearing transitions that could potentially exist in a session

where

MUSE

푥 푥 푥|풱|. . .     .   .   푥 푥

Music Recommender System with Shuffle Play Recommendation Enhancement
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 Item-based Matching
• To make the encoder to be invariant to augmentations

• Align the two views’ hidden representations derived from the same items

 Similarity-based Matching
• To supplement item-based matching

• Align representations of similar items
• Nearest Neighbor based on 푙2-distance

 Regularization
• To avoid the representation collapse problem

• inspired by VICReg

where

MUSE Music Recommender System with Shuffle Play Recommendation Enhancement
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 Aggregation Layer
• Local embedding:
• Global embedding (soft-attention):
• Alignment of Self-Supervised Learning 

 Prediction Layer
• To recommend top-K tracks for each session

MUSE Music Recommender System with Shuffle Play Recommendation Enhancement
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 Dataset: Music Streaming Sessions Dataset from Spotify [3]
• 160 million listening sessions with 20 billion plays, accompanied by user actions
• Select data belonging to a few days as adopted in a conventional work [4]

• used partial data due to its large size

 Preprocessing
• Filter out non-premium users, cold-start items (frequency ≤ 5), and short session (len(session) ≤ 1)
• 

• where ( ∗ , ) denotes a input squence ∗ and target (target must be listened by the user)
• Especially, input in Shuffle play must be listened by the user 

• 

EXPERIMENTS SETTING

[3] [WWW19] The Music Streaming Sessions Dataset
[4] [CIKM17] Neural attentive session-based recommendation

(b) Statistics of datasets

(a) Day split
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 MUSE achieves state-of-the-art performance in the real-world, large-scale dataset (i.e., MSSD)
• MUSE significantly outperforms backbone, i.e., SRGNN, due to SSL framework with transition-based augmentation
• MUSE significantly surpasses other SSL approaches due to fine-grained matching strategies

 Graph-based methods, e.g., SRGNN and GCSAN, show relatively high performance
• Utilize the transition between tracks by constructing graphs

 CoSeRNN deteriorate due to the dependence on contextual information which is exclusive
• e.g., device type, time since last session

EXPERIMENTS OVERALL PERFORMANCE

OursMusicSSLGraphAttentionSBR Setting

∆∆MUSECoSeRNNDuoRecCL4SRecGCSANSRGNNSASRecNARMMetricDataset

2.08%3.03%0.3636*
(0.0005) 

0.3159
(0.0020)

0.3378
(0.0020)

0.3352
(0.0016)

0.3562
(0.0012)

0.3529
(0.0010)

0.3350
(0.0017)

0.3394
(0.0016)

R@5

MSSD
5d

2.16%2.80%0.4153*
(0.0008)

0.3747
(0.0012)

0.3926
(0.0026)

0.3886
(0.0019)

0.4065
(0.0015)

0.4040
(0.0020)

0.3891
(0.0021)

0.3941
(0.0032)

R@10

1.84%3.24%0.2993*
(0.0006) 

0.2476
(0.0023)

0.2717
(0.0015)

0.2711
(0.0010)

0.2939
(0.0011)

0.2899
(0.0007)

0.2701
(0.0014)

0.2764
(0.0005)

M@5

1.86%3.20%0.3062*
(0.0005)

0.2554
(0.0022)

0.2790
(0.0015)

0.2781
(0.0010)

0.3006
(0.0011)

0.2967
(0.0007)

0.2772
(0.0013)

0.2836
(0.0007)

M@10

1.94%3.21%0.3154*
(0.0005)

0.2646
(0.0022)

0.2882
(0.0016)

0.2870
(0.0011)

0.3094
(0.0011)

0.3056
(0.0006)

0.2863
(0.0014)

0.2920
(0.0008)

N@5

1.93%3.07%0.3320*
(0.0004) 

0.2836
(0.0019)

0.3059
(0.00118)

0.3042
(0.0011)

0.3257
(0.0011)

0.3221
(0.0008)

0.3037
(0.0013)

0.3096
(0.0012)

N@10

* indicates a paired t-test results with 푝 < 0.01
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 MUSE substantially bolsters the performance on the shuffle play sessions
• Transition-based augmentation and fine-grained matching strategies are beneficial to shuffle play sessions

 MUSE boosts the performance on non-shuffle play sessions as well
• Even though our framework is designed for shuffle play session

 In contrast, the state-of-the-art baseline, GCSAN, is biased towards non-shuffle play session

EXPERIMENTS FINE-GRAINED PERFORMANCE

(a) Performance on Shuffle Play Session (b) Performance on Non-Shuffle Play Session

∆ ∆ ∆ ∆
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 Ablation on Augmentation
• Non-shuffle play sessions benefit from re-ordering-based augmentation

• Mimic the shuffle play session environment
• Shuffle play sessions especially benefit from transition-based augmentation

• Mitigate the unique transition pattern inherent in shuffle play session

 Ablation on Matching
• Item-based matching facilitates the alignment of the track embeddings of the identical items between two views
• Similarity-based matching complements item-based matching by considering the similarity of track representations

EXPERIMENTS ABLATION STUDY

(Augmentation to Non-shuffle play, Augmentation to Shuffle play)
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 Moderate reordering hyperparameter 휸 (i.e., 0.5) is advantageous
• Excessive reordering (i.e., high 훾) could hamper the original session’s semantic
• Too little reordering (i.e., low 훾) might hinder the augmentation’s potential for enhancing generalizability

 Low loss controlling hyperparameter 훼, (i.e., 0.2) is advantageous
• this choice acts effectively as a regularizer, contributing to the overall performance

EXPERIMENTS SENSITIVITY ANALYSIS
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 The first work that attempts to enhance prevailing shuffle-play environments in the music domain

 Transition-based augmentation
• Mitigate the unique transition pattern inherent in shuffle play session

 Fine-grained matching strategies: Item- and Similarity-based Matching
• Identical items and similar items between the two views to be close in the embedding space

 Demonstrate the superiority of MUSE in a real-world music streaming dataset

CONCLUSION
[Full Paper] https://arxiv.org/abs/2308.09649

[Source Code] https://github.com/yunhak0/MUSE

[Author Email] yunhak.oh@kaist.ac.kr

Paper Code

https://arxiv.org/abs/2308.09649
https://github.com/yunhak0/MUSE
mailto:yunhak.oh@kaist.ac.kr
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 Recall@K
• A measure of completeness, determines the fraction of relevant items retrieved out of all relevant items

 Mean Reciprocal Rank (MRR@K)
• Relevance based on inverse of the rank of the relevant items (hit) in a given list

 Normalized Discounted Cumulative Gain (NDCG@K)
• Relevance applied to logarithmic reduction factor

EXPERIMENTS EVALUATION PROTOCOL

Prof. C. Park. [KSE801] Recommender Systems & Graph@KAIST
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푅푒푐푎푙푙 =  
푇푃

푇푃 + 퐹푁
=

푙푖푠푡푒푛 푡푟푎푐푘푠 푟푒푐표푚푚푒푛푑푒푑
푎푙푙 푙푖푠푡푒푛 푡푟푎푐푘푠

(a) Recall (b) Mean Reciprocal Rank (MRR) (c) Normalized Discounted Cumulative Gain (NDCG)
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 Data augmentation techniques

 Model augmentation techniques

AUGMENTATION SEQUENCE DATA

[SIGIR21] Contrastive Learning for Sequential Recommendation (CL4SRec)
[CoRR21] Contrastive Self-supervised Sequential Recommendation with Robust Augmentation
[CoRR22] Self-supervised Learning for Sequential Recommendation with Model Augmentation


