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BAC KG RO U N D GRAPH REPRESENTATION LEARNING

Graph is ubiquitous data structure, employed extensively within computer science and related fields.
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Graph representation learning means mapping the nodes or entire graphs, as points in a low-dimensional vector space.

Graph representation learning has been a powerful strategy for analyzing graph-structured data such as social network,
especially by using Graph Neural Networks!



BAC KG RO U N D SELF-SUPERVISED LEARNING ON IMAGES

Self-Supervised Learning automatically generates some kind of supervisory signal to solve some task.
(Typically, to learn representations of data or to automatically label a dataset.)

Key Idea
- Define pretext training task that captures the information of the input data.
- Use the dependencies among different dimensions of the input data!
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Self-Supervised Learning uses way more supervisory than supervised learning, and enormously more than reinforcement learning.
That’s why calling it “unsupervisory” is totally misleading. - Yann LeCun, 2019

DOERSCH, Carl; GUPTA, Abhinav; EFROS, Alexei A. Unsupervised visual representation learning by context prediction. 4
In: Proceedings of the IEEE international conference on computer vision. 2015. p. 1422-1430.



BAC KG RO U N D SELF-SUPERVISED LEARNING ON IMAGES _ SIMCLR

SimCLR is trained by reducing the distance between representations of augmented views of the same image (Positive),
and increasing the distance between representations of augmented views from different images (Negative).

Maximize agreement
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(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Sample mini batch of N examples.

—> Create 2N data points via Data Augmentation.

—> Given a positive pair, treat other 2(N-1) points as negative examples.
- Instance Discrimination!

CHEN, Ting, et al. A simple framework for contrastive learning of visual representations.
In: International conference on machine learning. PMLR, 2020. p. 1597-1607.
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BAC KG RO U N D SELF-SUPERVISED LEARNING ON IMAGES _ BYOL

BYOL learns representations of images without using negative samples
- predicting the target representation with a given online representation

view representation projection prediction
— — )
fo ge 4o I BYOL
input ) 6 < optimizer(0, VoLy e, n
image t v > Yo > 20 q0(z0) . online )
LJ \ Online network
£ loss |
¢ <16+ (1—1)0
t' ‘ v’ > U Il ’I % i‘ﬁ;’ sg(zg) ¥ target Target network Online network
fe 9ge Sg
R — — —_—

At each training iteration, online network is trained to minimize the cosine similarity loss,
while target network’s parameters are updated using the exponential moving average of online network’s parameter.

GRILL, Jean-Bastien, et al. Bootstrap your own latent: A new approach to self-supervised learning. 6
arXiv preprint arXiv:2006.07733, 2020.



BAC KG RO U N D SELF-SUPERVISED LEARNING ON GRAPHS

Inspired by the success of contrastive methods in computer vision applied on images,
those methods have been recently adopted to graph-structured data.

GRACE (Inspired by SimCLR)

Learns representations by pulling the representation of the same node in the two
augmented views of graph while pushing apart representations of every other node. “

BGRL (Inspired by BYOL) .S

Learns representations by predicting the augmented view of node itself T Y
without using negative samples.
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Learning features that are invariant under the augmentation!



MOTIVATIO N GRAPHS EXHIBIT RELATIONAL INFORMATION

Recent graph representation learning (GRL) methods do not reflect the nature of the graph
— Recall that Graphs exhibit relational information among nodes

{ Push «<— Pull| Previous methods (contrastive & non-contrastive) cannot fully benefit from
Community 1 @ ﬁf) relational information of graph structured data
3‘\' @ % Tom ' @
e—"_ Bob “g/ ‘
7@ ~ - 2 \ (o Moreover,
- .;' ----- Y . James Contrastive methods (e.g. GRACE) are prone to sampling bias issue
/ l / James /l g g\
_______ T 2111____,—” Alice
Community 2 Sampllng Bias?
(a) Graph-Structured Data (b) Recent GRL methods Some negative samples are in fact semantically similar to query nodes

How about learning augmentation-invariant relationships?



M ETH O DO LOGY RELATIONAL SELF-SUPERVISED LEARNING ON GRAPHS

How can we define relationship between a query node and anchor nodes?
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We define cosine similarity as relationship between a query node and anchor nodes



M ETH O DO LOGY RELATIONAL SELF-SUPERVISED LEARNING ON GRAPHS
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Online network is trained to mimic the relational information captured by target network
= Learning augmentation-invariant relationship! (Instead of augmentation-invariant node representation)

Next research question: How to sample anchor nodes?
Diverse relational information regarding both global and local perspectives should be considered



M ETH O DO LOGY GLOBAL ANCHOR NODE SAMPLING

Global anchor nodes: Structurally distant nodes

()] 50’
t" 401 Computers
Phot . . pe . . . . p- .
S 301 o Misclassification rate of low-degree nodes is significantly high
(U .
2 201 - Degree-bias issue!
210]
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= Node degree We should focus on low-degree nodes while training RGRL

Misclassification rate for certain degree of nodes

Approach: Sample anchor nodes from inverse degree-weighted distribution wj = glosldeg;+1) | B

- Sample more from low-degree nodes

O<a<l1

Wj
ka eV Wk
Inverse degree-weighted distribution

psample(j) = ,Yoj € VvV

Setting 0 < a < 1 approximates the misclassification rate .



M ETH O DO LO GY LOCAL ANCHOR NODE SAMPLING

Local anchor nodes: Structurally close nodes

-® - Adjacency K-NN Diffusion . . . . _ . . .
Computers Photo Adjacency may fail to capture fine-grained relationship among nodes

<90 % + ex) “Data Mining” vs. “Machine Learning” community
£ « Structurally close but different class
= 80 *-———-0-——-—0—--0
g o————o———+—<“0\80
E ol - We should sample anchor nodes that are
O

i 8 16 320 « 1) Structurally close with query node in the graph structure
Number of Samples (K)

« 2) Share the same label with the query node
Ratio of its neighboring nodes being the same label

Approach: Sample anchor nodes based on diffusion score matrix (Personalized PageRank)

N kk i
S= > t(1-1*T
k=0 v;
(i,)) indicates closeness of node v; and v;
t : Teleport probability (t € (0,1))
T : Symmetric transition matrix
Diffusion Matrix S
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M ETH O DO LOGY RELATIONAL SELF-SUPERVISED LEARNING ON GRAPHS
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(Relational information
regarding target network)
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D I SC U SS I O N HOW RGRL OVERCOMES THE LIMITATIONS OF PREVIOUS WORKS

Previous works: 1) Contrastive methods, 2) Non-contrastive methods

1) Limitation of Contrastive methods
- Sampling bias: Simply treating all other nodes as negatives incurs false negatives

« Another problem occurs when sampling bias is combined with the contrastive loss that is defined as follows [1]:

Positive pair
« As 7 decreases, the model gives larger penalty to hard negative

exp(sim(z;, z;)/T
lij = —log —5x p(sin} - )/7) )f/ samples (push away)
k=1 ]l[k#i] eXp(Slm(zia Zk ) « Makes sense if we know true negatives (supervised setting)

« But, harmful in self-supervised learning where false negatives exist

Negative pair

Contrastive loss is “Hardness-aware loss”
- Gives larger penalties to similar nodes = similar nodes that belong to negative samples become more dissimilar

Thus, false negative is trained to be more dissimilar



DISCUSSION HOW RGRL OVERCOMES THE LIMITATIONS OF PREVIOUS WORKS

The problem gets even more severe in graph domain,
 In graphs, most “HARD” negatives are indeed “FALSE” negatives

False Negative False Negative
True Negative 1.0 True Negative
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215 >
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similarity similarity
(a) CIFAR-10 (Image) (b) Coauthor-CS (Graph)

RGRL relaxes the strict binary classification of contrastive methods with soft labeling
« RGRL can decide how much to push or pull other nodes based on the relational information among the nodes with
out relying on the binary decisions of positives and negatives
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D I SC U SS I O N HOW RGRL OVERCOMES THE LIMITATIONS OF PREVIOUS WORKS

Previous works: 1) Contrastive methods, 2) Non-contrastive methods

2) Limitation of Non-contrastive methods
 Since we don’t use any negative samples, node features should be fully informative
« Performance actually degrades if features contain noise (as will be shown later)
 Overfit to a few non-informative feature

RGRL alleviates the overfitting problem with a little help from other nodes in the graph
« Learn from the relationship with other nodes

RGRL relaxes the strict self-preserving loss with relation-preserving loss
 Allows the representations to vary as long as the relationship among the representations is preserved

16



D I SCUSS I O N HOW RGRL OVERCOMES THE LIMITATIONS OF PREVIOUS WORKS

Previous Works RGRL
Contrastive methods Strict ) Relaxed
(GRACE, GCA) Binary Classification Soft Labeling
Non-contrastive methods Strict ) Relaxed
(BGRL) Self-Preserving Relation-Preserving

RGRL achieves the best of both worlds by relaxing strict constraints of previous works



EXPE RI IVI E NTS NODE CLASSIFICATION

Transductive Inductive
Cite- Pub-  Cora ogbn-arXiv .

Cora seer med  Full Valid Test Reddit PPI

83.38 70.79 83.96 64.19 94.84 67.12

GRACE | (095  (083) (029 (036) | OOM OOM | (405 (0.05)
82.79 70.70 84.19 64.34 94.85 66.72

GCA 101)  (091) (032 (042) | OOM  OOM | (40 (0.08)
CCA-SSG 83.01 70.35 84.81 64.09 59.43 58.50 94.89 66.09
(0.66) (1.23) (0.22) (0.37) (0.05) (0.08) (0.02) (0.01)

BGRL 82.82 69.06 86.16 63.94 70.66 69.61 94.90 68.89
(0.86) (0.80)  (0.19)  (0.39) (0.06) (0.09) (0.04) (0.08)
RGRL 8398 71.29 85.33 64.62 72.34 71.49 95.04 69.28
(0.78)  (0.87) (0200  (0.39) | (0.09) (0.08) | (0.03)  (0.06)

WikiCS Computers  Photo Co.CS Co.Physics
GCN 7719 (0.12) 8651 (054)  92.42 (0.22)  93.03 (031) _ 95.65 (0.16)
Feats. 71.98 (0.00)  73.81 (0.00)  78.53 (0.00) _ 90.37 (0.00) _ 93.58 (0.00)
n2v 71.79 (0.05) 8439 (0.08)  89.67 (0.12)  85.08 (0.03)  91.19 (0.04)
DW 74.35 (0.06)  85.68 (0.06)  89.44 (0.11)  84.61(022)  91.77 (0.15)
DW-+Feats. | 77.21 (0.03)  86.28 (0.07)  90.05 (0.08)  87.70 (0.04)  94.90 (0.09)
DGI 75.35 (0.14)  83.95 (047)  91.61(0.22)  92.15(0.63)  94.51 (0.52)
GMI 74.85 (0.08)  82.21(031)  90.68 (0.17) OOM OOM
MVGRL 77.52 (0.08) 8752 (0.11)  91.74(0.07)  92.11(0.12)  95.33 (0.03)
GRACE 78.25 (0.65)  88.15(043)  92.52(0.32)  92.60 (0.11) OOM
GCA 78.30 (0.62)  88.49 (051)  92.99(0.27)  92.76 (0.16) OOM
CCA-SSG | 77.88 (0.41)  87.01(0.41) 9259 (0.25)  92.77 (0.17)  95.16 (0.10)
BGRL 79.60 (0.60)  89.23 (0.34)  93.06 (0.30)  92.90 (0.15)  95.43 (0.09)
RGRL 80.29(0.72) 89.70(0.44) 93.43(0.31) 92.94(0.13) 95.46 (0.10)

RGRL outperforms previous methods that overlook the relationship among nodes

Performance on node classification tasks

Performance on various datasets (transductive/inductive)
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EXPE RI IVI E NTS NODE CLASSIFICATION

| WikiCS Computers  Photo Co.CS Co.Physics
GCN 77.19 (0.12) 86.51 (0.54) 92.42 (0.22) 93.03 (0.31) 95.65 (0.16
Feats. |l'98 (0.00)  73.81(0.000  78.53(0.00) | [90.37 (0.00)  93.58 (0.00
n2v 71.79 (0.05) _ 84.39 (0.08) _ 89.67 (0.12)  85.08 (0.03) _ 91.19 (0.04)
DW 74.35 (0.06)  85.68 (0.06)  89.44 (0.11)  84.61(0.22)  91.77 (0.15)
DW+Feats. | 77.21 (0.03)  86.28 (0.07)  90.05(0.08)  87.70 (0.04)  94.90 (0.09)
DGI 75.35 (0.14)  83.95 (047)  91.61(0.22)  92.15 (0.63)  94.51 (0.52)
GMI 74.85(0.08)  82.21(0.31)  90.68 (0.17) OOM OOM
MVGRL 77.52 (0.08)  87.52(0.11)  91.74(0.07)  92.11 (0.12)  95.33 (0.03)
GRACE 78.25 (0.65)  88.15(0.43)  92.52(0.32)  92.60 (0.11) OOM
GCA 78.30 (0.62)  88.49 (0.51)  92.99 (0.27)  92.76 (0.16) OOM
CCA-SSG | 77.88 (0.41)  87.01(0.41)  92.59(0.25)  92.77 (0.17)  95.16 (0.10)
BGRL 79.60 (0.60)  89.23 (0.34)  93.06 (0.30)  92.90 (0.15)  95.43 (0.09)
RGRL 80.29(0.72) 89.70(0.44) 93.43(0.31) 92.94(0.13) 95.46(0.10)

Performance on node classification tasks

Less Informative Features

More Informative Features
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EXPE RI IVI E NTS NODE CLASSIFICATION

WikiCS Computers  Photo Co.CS Co.Physics
GCN 7719 (0.12) 8651 (0.54)  92.42 (0.22)  93.03 (031)  95.65 (0.16)
Feats. 71.98 (0.00)  73.81 (0.00)  78.53 (0.00) _ 90.37 (0.00) _ 93.58 (0.00)
n2v 71.79 (0.05)  84.39 (0.08)  89.67 (0.12)  85.08 (0.03)  91.19 (0.04)
DW 74.35 (0.06)  85.68 (0.06)  89.44 (0.11)  84.61(0.22)  91.77 (0.15)
DW+Feats. | 77.21(0.03)  86.28 (0.07)  90.05(0.08)  87.70 (0.04)  94.90 (0.09)
DGI 75.35 (0.14)  83.95 (047)  91.61 (0.22)  92.15 (0.63)  94.51 (0.52)
GMI 74.85 (0.08)  82.21(031)  90.68 (0.17) OOM OOM
MVGRL 7752 (0.08)  87.52(0.11)  91.74(0.07)  92.11 (0.12)  95.33 (0.03)
GRACE 78.25 (0.65)  88.15(0.43)  92.52(0.32)  92.60 (0.11) OOM
GCA 78.30(0.62) 8849 (051) 92,99 (0.27) 92.76 (0.16)  OOM
CCA-SSG || 77.88 (0.41)  87.01(0.41) 9259 (0.25) || 92.77 (0.17)  95.16 (0.10)
BGRL 79.60 (0.60)  89.23 (0.34)  93.06 (0.30) || 92.90 (0.15)  95.43 (0.09)
RGRL 80.29(0.72) 89.70(0.44) 93.43 (031)|[ 92.94(0.13) 95.46(0.10)

Performance on node classification tasks

Dataset with less informative features
—> Large improvements in performance
- External self-supervisory signals from other nodes help RGRL to learn from less informative features

Dataset with more informative features
- RGRL is more robust than BGRL as the quality of input features gets worse

Acc. of BGRL & RGRL (%)

RGRL
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—— BGRL
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APPE N DIX EXPERIMENTS: LINK PREDICTION & MULTIPLEX NETWORK

Computers Photo Co.CS Co. Physics

AUC AP AUC AP AUC AP AUC AP
%b GRACE 0.939  0.939  0.962 0.960  0.970 0.970 OOM OOM
Z GCA 0.954  0.954  0.965 0.960 0.971 0.970 OOM OOM
g CCA-SSG | 0.961 0.959 0.973 0.970 0.949 0.950 0.943 0.936
] BGRL 0.964 0.961 0.978 0.976 0.952 0.948 0.952 0.947
é RGRL 0974 0972 0.983 0.981 0.967 0968 0.964 0.963
b GRACE 0.933 0.933 0.939 0.929 0.870 0868 OOM OOM
) GCA 0.938  0.929  0.948 0.939 0.874 0.869 OOM OOM
..ZU CCA-SSG | 0.954 0.952 0.947 0.943 0.847 0.835 0.871 0.856
3 BGRL 0.959 0.956 0.959 0.956 0.845 0.832 0.903 0.892
= RGRL 0969 0968 0967 0.964 0878 0.881 0.923 0.919

Performance on link prediction

Random Negative
- Randomly select pair of nodes that are not connected

Hard Negative
- Select pair of nodes that are within 3-hop distances
- Harder than random negatives!

Improvements on hard negative edges is more significant than random negatives
- RGRL detects more fine-grained relational information

21



EXP E RI M E NTS QUALITATIVE ANALYSIS — CASE STUDY

Query Top-1 # Co-authored 0
Author Model Similar Author Papers Student?
Jiawei BGRL Ke Wang 14 X
Han RGRL Xifeng Yan 87 v
Christos | BGRL | Tina Eliassi-Rad 27 X
Faloutsos [ RGRL | Hanghang Tong 47 v
Query Model Top-1 # Co-authored Research
Author ode Similar Author Papers Keywords
Jiawei BGRL Zhou Aoying 0 Query Processing
Han RGRL Ee-Peng Lim 0 Data & Text Mining
Christos | BGRL | Michael J. Pazzani 0 Machine Learning
Faloutsos [ RGRL David Jensen 2 Machine Learning

Case 1) Which author is the most similar?

- Discovers author who have more co-authored papers
- Discovers former Ph.D. students of the query authors

Advisor-advisee relationship
— Core relationship in the academia network!

Case 2) Which author will co-work in the future?

- Discovers author of more relevant research area
- Discovers author of actually co-authored in the past

RGRL discovers core relationship and meaningful knowledge that is not revealed in the given graph
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CONCLUSION

Proposed to learn node representations such that the relationship among nodes is invariant to augmentations
- “Augmentation-Invariant” Relationship

KL D|vergence Loss

p’

By learning augmentation invariant relationship,
RGRL relaxes several strict constraints of previous works thereby achieving the best of both worlds

Extensive experiments on 14 datasets demonstrate that RGRL
1) is robust to less informative or noisy features

2) improves performance on low degree nodes
3) discovers core relationship and meaningful knowledge that is not revealed in the given graph
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THANK YOU!

[Full Paper] https://arxiv.org/abs/2208.10493

[Source Code] https://github.com/Namkyeong/RGRL

[Lab Homepage] http://dsail.kaist.ac.kr/

[Contact] namkyeongSe@kaist.ac.kr

24


https://arxiv.org/abs/2208.10493
https://github.com/Namkyeong/RGRL
http://dsail.kaist.ac.kr/
mailto:namkyeong96@kaist.ac.kr

APPE N DIX EXPERIMENTS: LINK PREDICTION & MULTIPLEX NETWORK

Dataset IMDB DBLP
Metric Macro-F1  Micro-F1 | Macro-F1  Micro-F1
HAN 0.599 0.607 0.716 0.708
DMGI 0.648 0.648 0.771 0.766
DMGl4, 0.602 0.606 0.778 0.770
HDMI 0.650 0.658 0.820 0.811
BGRL 0.631 0.634 0.819 0.807
RGRL 0.653 0.658 0.830 0.818

Computers Photo Co.CS Co. Physics

AUC AP AUC AP AUC AP AUC AP
?_,b GRACE 0.939 0.939 0.962 0.960 0.970 0970 OOM OOM
Z GCA 0.954 0.954 0.965 0960 0.971 0970 OOM OOM
g CCA-SSG | 0.961 0.959 0.973 0.970 0.949 0.950 0.943 0.936
= BGRL 0.964  0.961 0.978 0.976 0.952 0.948 0.952 0.947
é RGRL 0.974 0.972 0.983 0.981 0.967 0968 0.964 0.963
b GRACE 0.933 0.933 0.939 0.929 0.870 0.868 OOM OOM
% GCA 0.938 0.929 0.948 0.939 0.874 0869 OOM OOM
o CCA-SSG | 0.954 0.952 0.947 0.943 0.847 0.835 0.871 0.856
3 BGRL 0.959 0.956 0.959 0.956 0.845 0.832 0.903 0.892
= RGRL 0.969 0968 0967 0.964 0878 0.881 0.923 0.919

Performance on link prediction

Link Prediction
- Improvements on hard negative edges (within 3-hop distances) is more significant than random negatives

- RGRL detects more fine-grained relational information

Multiplex Network

= RGRL can learn from diverse relationship inherent in multiplex network due to its flexibility

Performance on multiplex network
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AP P E N DIX EXPERIMENTS: MODEL ANALYSIS

Accuracy (%)

local __
7% = 0.01

T . T
S = epsinthy b)/m) Recall that temperature controls sharpness of similarity distribution
i - ~E o~ > J 1 . . . .
: Sken; exp(sim(h, i) /7p) - Learns discriminative features as temperature decreases
—8— Global (t§") Local (o<?)
Computers 94- Photo
90
Mj 934._—_.\A
88
g 92/
78
91
76 \
0.001 0.01 0.1 1.0 %001 o001 0.1 1.0
Temperature

Global Temperature
— Target distribution should be sharpened to provide strong supervisory signal for the model training

— Less discriminative features are required (high temperature)
—> Structurally close and semantically identical nodes should be close in representation space

1.00
0.95
0.90
0.85
0.80
0.75

0.70
= 0.00
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AP P E N DIX EXPERIMENTS: MODEL ANALYSIS

Accuracy (%)

Considering the global similarity (i.e., Global Only) is more beneficial than considering the local similarity

Computers 94
901
89
s 921
o
771
761 901
Local Global RGRLw/ RGRL Local
only only Random

Sampling

only

Photo

Global RGRL w/ RGRL
only Random
Sampling

Ablation Studies

Misclassification rate (%)
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20

BGRL

RGRL

Computers

—— RGRL w/ Random Sampling

Computers

Rate gap

M
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Photo

\

Q
Ozok

N

/\_\/

N ~ =<

0 2 4 6 8 1012 14 16 18

Misclassification rate comparison

-5 0

Node Degree

- However, considering the both perspective (i.e., RGRL) shows the best performance

RGRLU's inverse degree sampling strategy successfully alleviates the degree-bias issue

0 2 4 6 8 10 12 14 16 18

Gap between the rate (%)
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