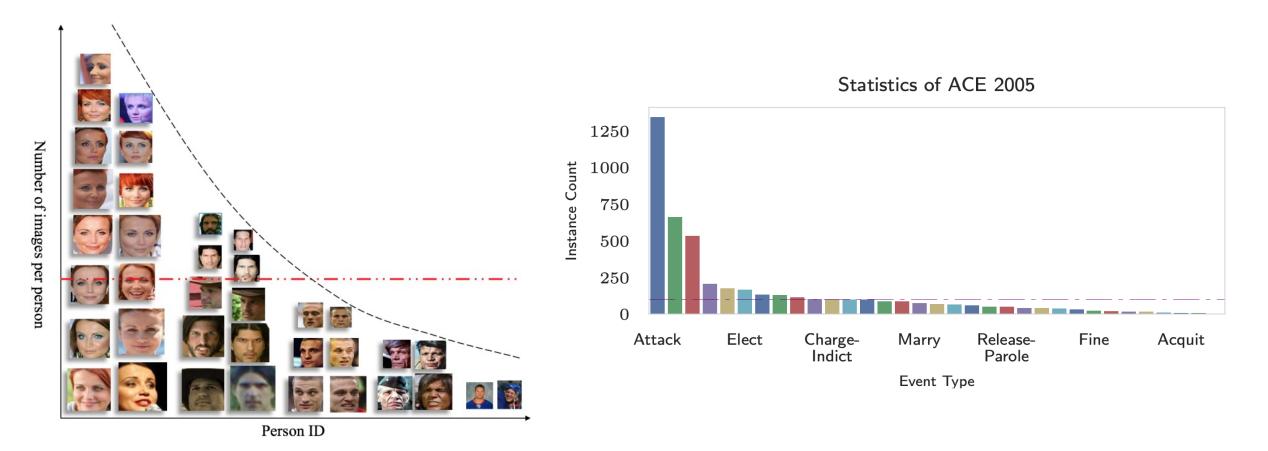


LTE4G: Long-Tail Experts for Graph Neural Networks

Sukwon Yun, Kibum Kim, Kanghoon Yoon, Chanyoung Park

Korea Advanced Institute of Science and Technology (KAIST)


TABLE OF CONTENTS

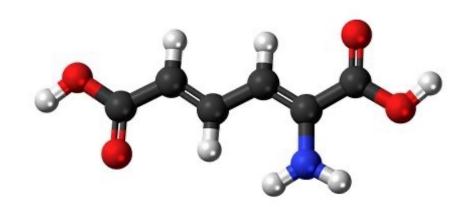
Background

- Long-Tail Problem
- Graph Neural Networks
- Long-Tail Problem on Graph Neural Networks
- Motivation
- LTE4G: Long-Tail Experts for Graph Neural Networks
- Experiments
- Conclusion

BACKGROUND: LONG-TAIL PROBLEM

Compared to Head cases, Tail cases are under-represented and thus fail to generalize!

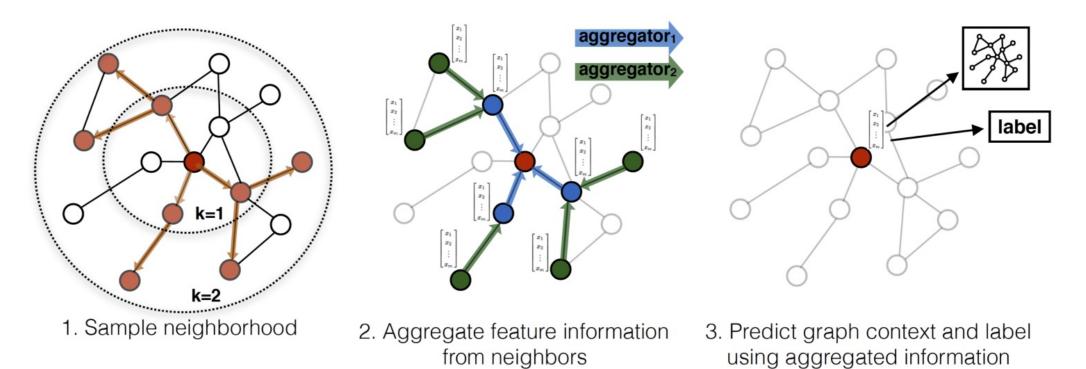
Zhang, Xiao, et al. "Range loss for deep face recognition with long-tailed training data." *Proceedings of the IEEE International Conference on Computer Vision.* 2017. Liu, Jian, et al. "Event detection via gated multilingual attention mechanism." *Proceedings of the AAAI conference on artificial intelligence.* Vol. 32. No. 1. 2018. **3**


BACKGROUND: GRAPH NEURAL NETWORKS

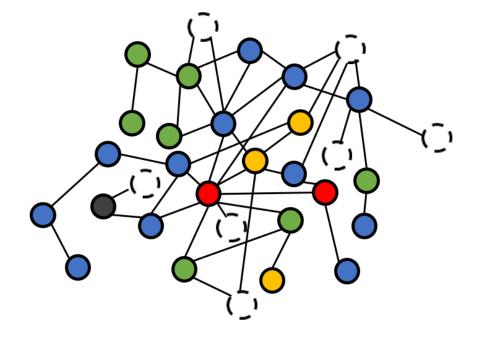
Networks are everywhere!

DSAIL@KAIST

• Graphs are natural way to model such networks.

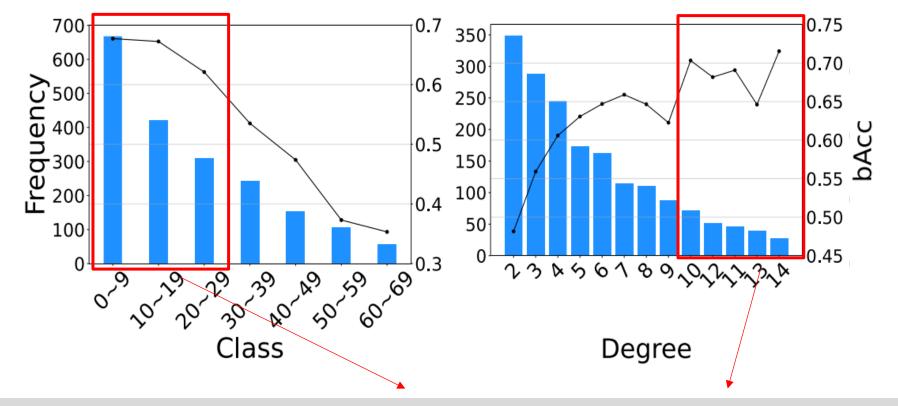

Social Networks

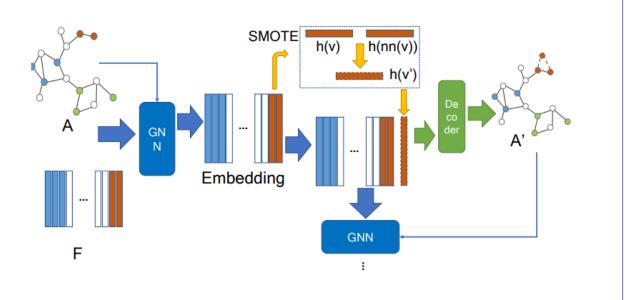
Molecules

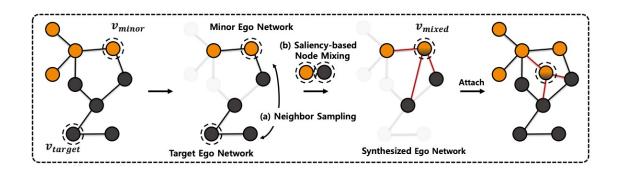

BACKGROUND: GRAPH NEURAL NETWORKS

- Graph Neural Networks (GNNs)
 - Compress a set of vectors into a single vector (i.e., node representation)
 - Message and Aggregation Scheme

• In graph, long-tail problem lies on class and degree perspectives!

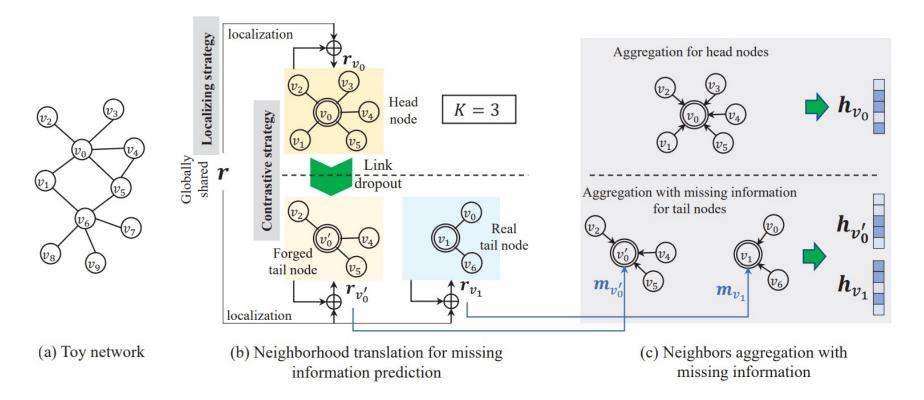



In graph, long-tail problem lies on class and degree perspectives!



GNNs tend to be biased towards Head Class node and Head Degree node!

- Class Perspective
 - GraphSMOTE [1], GraphENS [2] Oversamples Tail Class nodes

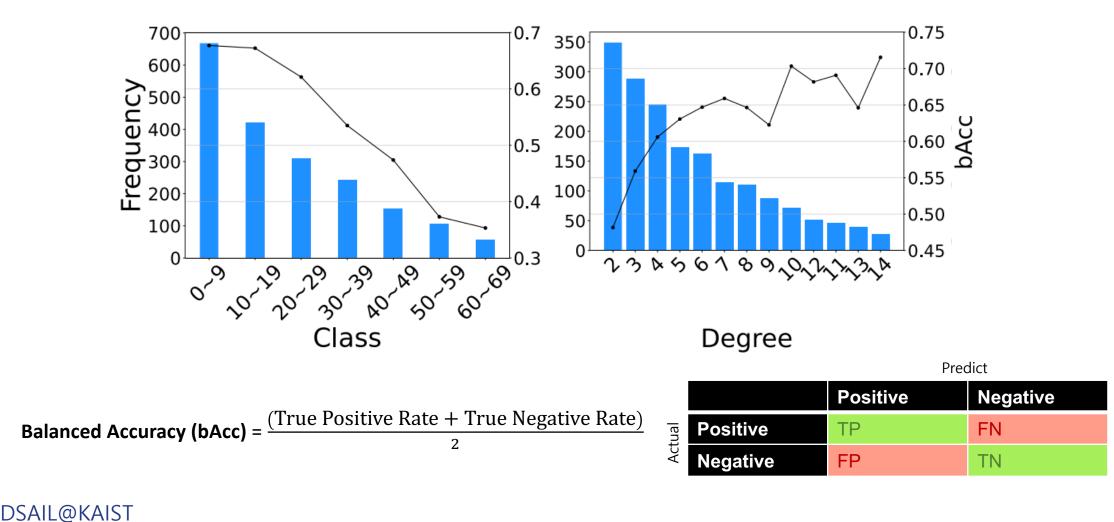

However, the degree long-tailedness has not been considered!

[1] Zhao, Tianxiang, Xiang Zhang, and Suhang Wang. "Graphsmote: Imbalanced node classification on graphs with graph neural networks." *Proceedings of the 14th ACM international conference on web search and data mining*. 2021.
 [2] Park, Joonhyung, Jaeyun Song, and Eunho Yang. "GraphENS: Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification." *International Conference on Learning Representations*. 2021.

Degree Perspective

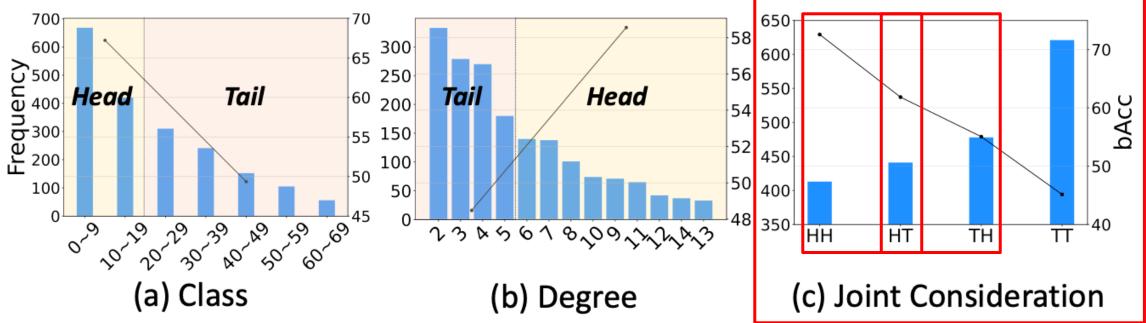
• Tail-GNN [1] – Enhance representation of Tail Degree nodes via Head Degree nodes

However, the class long-tailedness has not been considered!



[1] Liu, Zemin, Trung-Kien Nguyen, and Yuan Fang. "Tail-gnn: Tail-node graph neural networks." *Proceedings of the* 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021. **9**

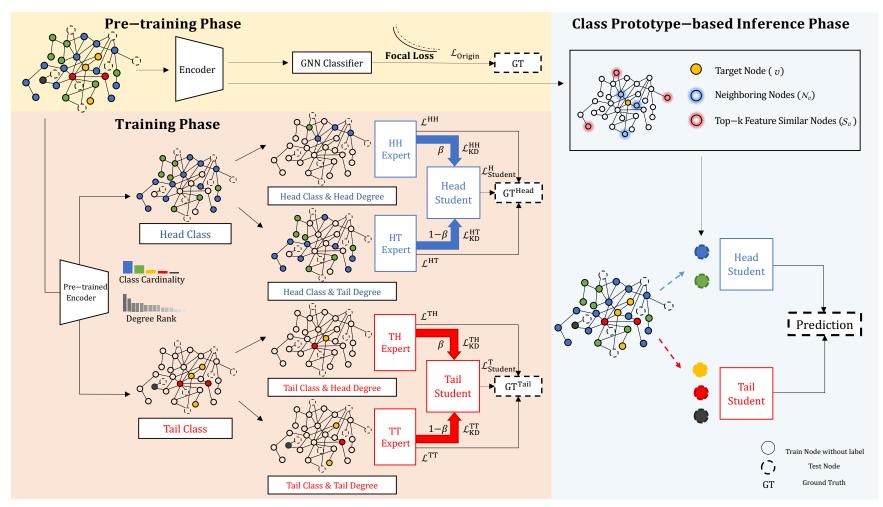
MOTIVATION: CAN WE JOINTLY ADDRESS BOTH LONG-TAILEDNESS?


- Existing works only consider either class- or degree-longtailedness
 - Can we view the both class- and degree- long-tailedness jointly?

 \odot

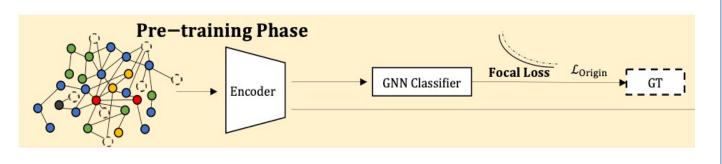
MOTIVATION: CAN WE JOINTLY ADDRESS BOTH LONG-TAILEDNESS?

- Existing works only consider either class- or degree-longtailedness
 - Can we view the both class- and degree- long-tailedness jointly?

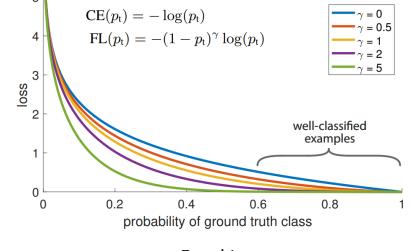


Head Class nodes do *not* always generalize well (HH > HT)

Head Degree nodes do not always generalize well (HT > TH)

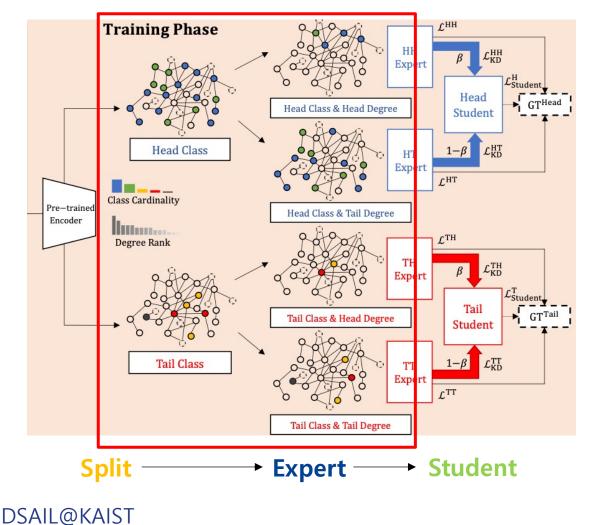


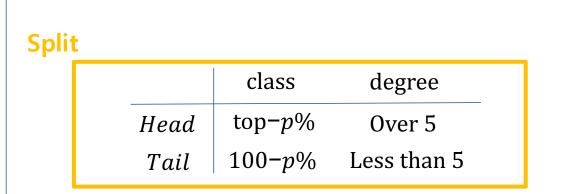
Overall Framework of LTE4G



- Pre-training Phase
 - Obtain Pre-trained Encoder with focal loss

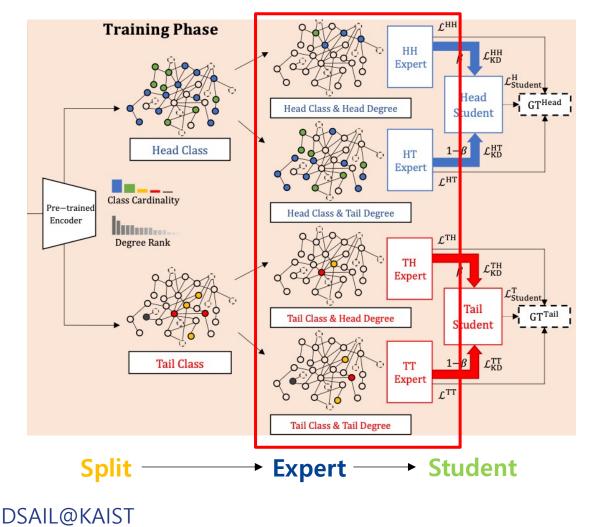
 $\mathbf{H}^{\text{pre}} = \sigma(\hat{\mathbf{D}}^{-1/2}\hat{\mathbf{A}}\hat{\mathbf{D}}^{-1/2}\mathbf{X}\mathbf{W}^{\text{pre}})$ $\mathbf{P}^{\text{og}} = \text{softmax}(\mathbf{Z}^{\text{og}}), \quad \mathbf{Z}^{\text{og}} = \sigma(\hat{\mathbf{D}}^{-1/2}\hat{\mathbf{A}}\hat{\mathbf{D}}^{-1/2}\mathbf{H}^{\text{pre}}\mathbf{W}_{\text{GNN}}^{og})\mathbf{W}_{\text{MLP}}^{og}$ $\overset{5}{\underset{k=1}{\overset{\text{cE}(p_{t}) = -\log(p_{t})}{\text{FL}(p_{t}) = -(1-p_{t})^{\gamma}\log(p_{t})}} \qquad \overbrace{\substack{q = 0.5\\ \gamma = 1\\ \gamma = 2\\ \gamma = 5}}^{\overset{\gamma = 0}{\underset{q = 0.5}{\overset{\gamma = 1}{\overset{\gamma = 0}{\overset{\gamma = 0}{\overset$




Focal Loss

Training Phase

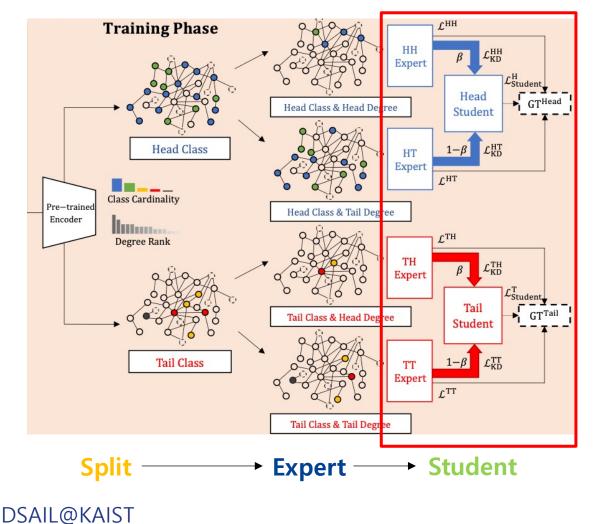
- Split \rightarrow Expert \rightarrow Student



Head Class & Head Degree (HH)
 Head Class & Tail Degree (HT)
 Tail Class & Head Degree(TH)
 Tail Class & Tail Degree (TT)

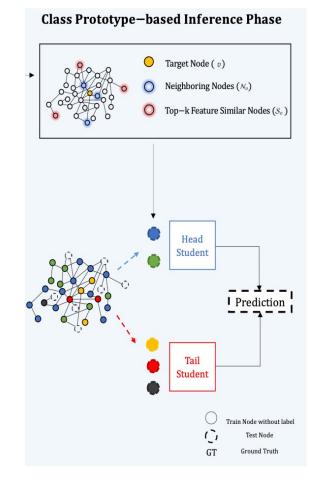
Training Phase

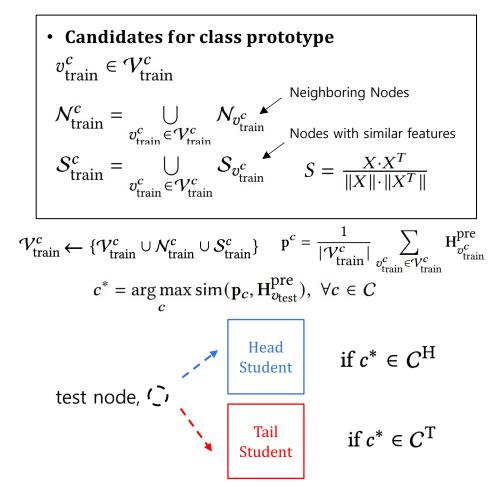
- Split \rightarrow Expert \rightarrow Student



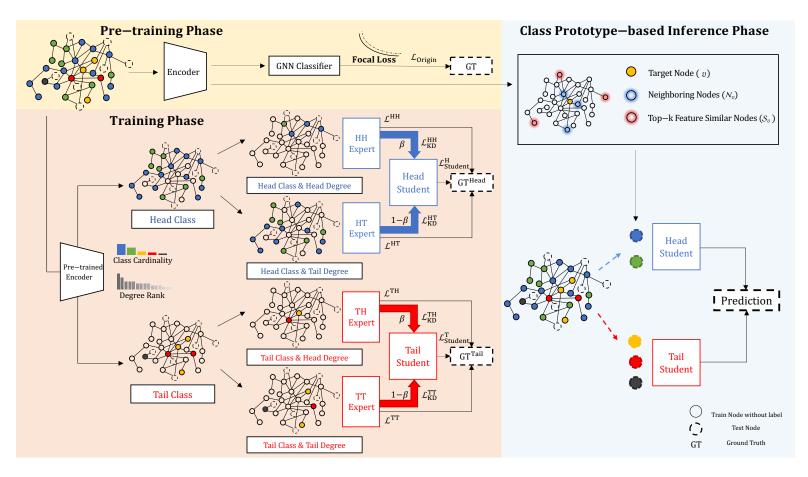
Expert

$$\mathbf{P}^* = \operatorname{softmax}(\mathbf{Z}^*), \quad \mathbf{Z}^* = \sigma(\hat{\mathbf{D}}^{-1/2}\hat{\mathbf{A}}\hat{\mathbf{D}}^{-1/2}\mathbf{H}^{\operatorname{pre}}\mathbf{W}^*_{\operatorname{GNN}})\mathbf{W}^*_{\operatorname{MLP}}$$
$$\mathcal{L}^*_{\operatorname{Expert}} = \sum_{v \in V^*} \sum_{c \in \mathcal{C}^*} CE(\mathbf{P}^*_v[c])$$
$$* \in \{\operatorname{HH}, \operatorname{HT}, \operatorname{TH}, \operatorname{TT}\}$$


Training Phase


- Split \rightarrow Expert \rightarrow Student

Student $\mathbf{P}^{\star} = \operatorname{softmax}(\mathbf{Z}^{\star}), \ \mathbf{Z}^{\star} = \sigma(\hat{\mathbf{D}}^{-1/2}\hat{\mathbf{A}}\hat{\mathbf{D}}^{-1/2}\mathbf{H}^{\operatorname{pre}}\mathbf{W}_{\operatorname{GNN}}^{\star})\mathbf{W}_{\operatorname{MLP}}^{\star}$ $\star \in \{H, T\}$ Knowledge Distillation from Expert to Student $\mathcal{L}_{\mathrm{KD}}^{\mathrm{HH}} = D_{\mathrm{KL}}[\mathbf{P}^{\mathrm{HH}} \| \mathbf{P}^{\mathrm{H}}], \quad \mathcal{L}_{\mathrm{KD}}^{\mathrm{HT}} = D_{\mathrm{KL}}[\mathbf{P}^{\mathrm{HT}} \| \mathbf{P}^{\mathrm{H}}]$ Head-to Tail Curriculum Learning ٠ $\mathcal{L}_{\text{Student}}^{\text{H}} = \beta \mathcal{L}_{\text{KD}}^{\text{HH}} + (1 - \beta) \mathcal{L}_{\text{KD}}^{\text{HT}}$ β Epoch


- Class Prototype-based Inference Phase
 - Generate Class Prototype by expanded candidates
 - Assign test node on certain Student based on its similarity between class prototypes

In a nutshell,

Pre-training Phase

• Obtain a Pre-trained Encoder

Training Phase

- <u>Split</u> nodes in a balanced manner
- Obtain Experts and Students
- Using Knowledge Distillation
- Using Head-to-Tail Curriculum Learning

Class Prototype-based Inference Phase

- <u>Generate</u> Class Prototype
- <u>Assign</u> each test node to a student

Data Statistics & Evaluation Metrics

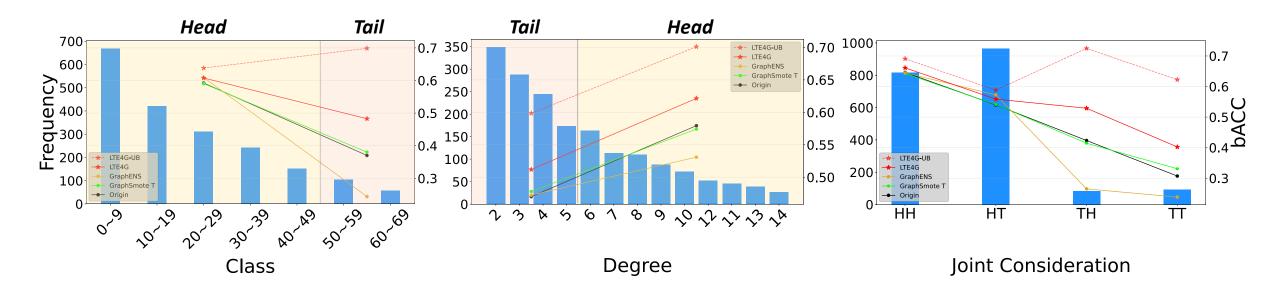
Dataset	#Nodes	#Edges	#Features	#Classes	
Cora	2,708	5,429	1,433	7	
CiteSeer	3,327	4,732	3,703	6	
Cora-Full	19,793	146,635	8,710	70	

Dataset	Imb. class	Imb. ratio	L ₀	\mathbf{L}_1	\mathbf{L}_2	L_3	\mathbf{L}_4	L_5	L_6
	3	10%	23.3	23.3	23.3	23.3	2.4	2.4	2.4
	5	5%	24.1	24.1	24.1	24.1	1.2	1.2	1.2
Cora	5	10%	40.0	40.0	4.0	4.0	4.0	4.0	4.0
	5	5%	44.4	44.4	2.2	2.2	2.2	2.2	2.2
	LT	1%	54.0	25.0	11.6	5.4	2.4	1.2	0.5
	3	10%	30.3	30.3	30.3	3.0	3.0	3.0	-
		5%	31.7	31.7	31.7	1.6	1.6	1.6	-
CiteSeer	5	10%	66.7	6.7	6.7	6.7	6.7	6.7	-
	5	5%	80.0	4.0	4.0	4.0	4.0	4.0	-
	LT	1%	60.7	24.1	9.5	3.8	1.5	0.5	-
Cora-Full	-	1.1%	34.0	18.9	14.1	10.9	6.9	4.8	2.6

		Pre	dict
		Positive	Negative
ctual	Positive	TP	FN
Act	Negative	FP	TN

Balanced Accuracy (bAcc.) = $\frac{(\text{True Positive Rate + True Negative Rate)}}{2}$ F1-Score = 2 * $\frac{\text{Precision * Recall}}{\text{Precision + Recall}}$ Geometric Means (G-Means) = $\sqrt{\text{True Positive Rate * True Negative Rate}}$ Accuracy (Acc.) = $\frac{\text{TP+TN}}{\text{TP + FN + FP + TN}}$

Performance on Node Classification


		Imb. class num: 3							Imb. class num: 5					
	Method	Imb	alance_ratio	: 10%	Im	balance_ratio	o: 5%	Imb	oalance_ratio	: 10%	Iml	oalance_ratio	: 5%	
		bAcc.	Macro-F1	G-Means	bAcc.	Macro-F1	G-Means	bAcc.	Macro-F1	G-Means	bAcc.	Macro-F1	G-Means	
	Origin	68.8±4.0	67.6±5.0	80.8±2.6	60.0±0.4	56.6±0.7	74.8 ± 0.3	64.9±6.2	64.7±5.7	78.1±4.2	55.1±2.6	51.4 ± 2.4	71.4±1.8	
	Over-sampling	65.6 ± 4.3	63.4±5.6	78.6±2.9	59.0±2.2	53.9 ± 2.6	74.2 ± 1.5	58.9±5.6	56.9 ± 7.6	74.0 ± 3.9	49.1±4.1	45.6 ± 5.4	67.0±3.1	
	Re-weight	70.6 ± 4.3	69.9 ± 5.1	81.9 ± 2.8	60.8±1.8	56.7 ± 2.4	75.4±1.3	65.2±7.6	65.0 ± 8.2	78.3 ± 5.2	57.9 ± 4.3	54.8 ± 5.5	73.3±3.0	
	SMOTE	65.1 ± 4.0	62.3 ± 5.1	78.3 ± 2.7	59.0±2.2	53.9 ± 2.6	74.2 ± 1.5	60.3±7.6	58.7 ± 8.9	74.9 ± 5.3	49.1±4.1	45.6 ± 5.4	67.0 ± 3.1	
	Embed-SMOTE	61.0 ± 3.6	58.0 ± 5.5	75.5 ± 2.5	55.5±2.1	50.0 ± 3.1	71.7±1.5	53.2±5.2	50.9 ± 6.4	70.0 ± 3.8	40.7±2.8	36.5 ± 3.0	60.5 ± 2.2	
Cora	$GraphSMOTE_T$	70.0 ± 3.4	68.6 ± 4.9	81.6 ± 2.2	62.5±1.8	58.7 ± 2.1	76.5 ± 1.2	66.3±6.6	65.3 ± 7.7	79.0 ± 4.5	55.8±5.6	52.4 ± 4.7	71.9 ± 4.0	
	GraphSMOTE _O	67.3±3.8	65.5 ± 5.0	79.7±2.5	61.0±0.6	58.4 ± 0.7	75.5 ± 0.4	62.8±6.1	62.0 ± 6.1	76.7 ± 4.2	59.6±4.3	55.9 ± 4.2	74.5 ± 3.0	
	GraphSMOTE _{preT}	70.6 ± 6.3	68.9±7.9	81.9 ± 4.1	67.5±5.7	64.5 ± 8.0	79.9 ± 3.8	69.4±5.2	68.3 ± 5.2	81.1±3.4	66.0±6.0	63.4±6.5	78.8 ± 4.0	
	GraphSMOTE _{preO}	69.8 ± 5.7	67.9 ± 7.1	81.4±3.7	67.2±5.2	64.0 ± 7.3	79.6 ± 3.5	69.1±7.7	67.8 ± 7.9	80.9 ± 5.1	66.8±4.9	64.6 ± 4.9	79.4±3.2	
	GraphENS	59.3 ± 7.0	55.4 ± 10.6	74.2±4.9	55.1±4.9	48.1±7.9	71.3±3.5	44.3±6.5	41.0 ± 7.0	63.3±5.0	36.1±10.1	31.1±12.3	56.3±8.4	
	Tail-GNN	64.6±3.6	62.0 ± 5.4	77.9 ± 2.4	57.2±1.5	51.8 ± 1.8	72.9 ± 1.1	55.9±4.5	54.0 ± 5.0	71.9 ± 3.2	41.7 ± 1.4	36.8 ± 2.8	61.4±1.1	
	LTE4G	73.2±5.4	72.1±6.1	83.6±3.5	70.9±2.5	69.6±2.8	82.1±1.6	75.4±5.6	75.4±5.4	85.0±3.6	70.2±4.5	68.8±4.7	81.7±3.0	
	Origin	49.5 ± 2.1	43.1±2.3	66.7±1.5	48.2±0.9	39.3 ± 0.4	65.7 ± 0.7	48.9±1.4	45.3±1.3	66.2±1.1	42.4±6.5	39.1±7.3	61.1±5.1	
	Over-sampling	51.5 ± 3.0	43.7 ± 2.1	68.2 ± 2.2	47.8±0.8	38.9 ± 1.9	$65.4 {\pm} 0.6$	43.0±3.4	40.3 ± 1.7	61.7 ± 2.7	40.1±2.0	34.2 ± 1.5	59.4±1.6	
	Re-weight	52.1 ± 2.7	46.2 ± 3.2	68.6 ± 2.0	48.0±0.4	39.2±1.1	$65.6 {\pm} 0.3$	48.4±3.9	44.5 ± 3.9	65.8 ± 2.9	41.3 ± 4.5	35.6 ± 5.3	60.3±3.6	
	SMOTE	48.7 ± 2.5	40.1±1.8	66.1±1.9	47.8±0.8	38.9 ± 1.9	65.4 ± 0.6	44.9±4.4	41.9 ± 4.1	63.2 ± 3.4	40.1±2.0	34.2 ± 1.5	59.4±1.6	
L.	Embed-SMOTE	47.5 ± 2.1	37.9 ± 1.7	65.2 ± 1.6	46.7±3.0	35.7 ± 2.8	64.5 ± 2.3	43.2±6.5	38.3 ± 5.8	61.8 ± 5.2	33.2±6.6	28.3 ± 7.9	53.4±5.9	
CiteSeer	$GraphSMOTE_T$	51.2 ± 3.7	43.4 ± 4.2	67.9 ± 2.8	49.3±2.0	40.1±1.3	66.5±1.5	50.3±5.0	46.1±4.5	67.2±3.7	46.5±3.7	41.5 ±4.1	64.4±2.9	
Cite	GraphSMOTE _O	52.7 ± 2.3	45.3 ± 2.8	69.1±1.7	49.5±2.6	40.3±1.8	66.7 ± 2.0	49.5±3.5	44.5 ± 2.9	66.7±2.6	42.3±6.6	36.9 ± 6.6	61.0±5.3	
0	GraphSMOTE _{preT}	44.7 ± 1.7	37.3 ± 2.1	63.1±1.3	48.2±3.9	39.4 ± 4.9	65.7 ± 3.0	41.8 ± 4.1	39.5 ± 4.1	60.7±3.3	38.0 ± 2.6	33.6 ± 2.5	57.7±2.1	
	GraphSMOTE preO	44.1 ± 2.0	36.6±1.7	62.6±1.6	45.7±2.6	37.1±3.1	$63.8 {\pm} 2.0$	43.4±6.6	42.9±6.3	62.7±5.1	39.2±1.8	34.7 ± 2.4	58.7±1.5	
	GraphENS	44.2 ± 3.5	35.9 ± 1.0	62.7±2.7	43.5±2.6	33.4±1.9	62.1 ± 2.1	33.0±3.2	28.6 ± 4.4	53.4±2.9	28.5±6.7	23.1±6.2	49.1±6.2	
	Tail-GNN	48.8±1.9	40.4±2.9	66.2±1.5	48.2±1.7	39.4±1.2	65.7±1.3	42.4±6.1	38.9 ± 6.1	61.1±4.8	34.2 ± 4.8	28.2 ± 4.1	54.4±4.2	
	LTE4G	54.2 ±4.5	51.8 ±4.1	70.2±3.3	52.7±2.1	48.3 ±3.7	69.1 ±1.5	52.1±3.7	47.2±3.6	68.6±2.7	47.3±1.1	41.2 ± 2.1	65.0±0.9	

Method	Cora-Full								
Method	bAcc.	Macro-F1	G-Means	Acc.					
Origin	52.0±1.0	52.5 ± 0.8	71.9 ± 0.7	60.5 ± 0.2					
Over-sampling	51.4 ± 1.0	52.4 ± 0.9	71.5 ± 0.7	60.9 ± 0.3					
Re-weight	52.1±0.9	52.6 ± 0.7	$72.0{\pm}0.6$	60.7 ± 0.1					
SMOTE	52.0 ± 0.7	52.6 ± 0.6	$71.9{\pm}0.5$	60.7 ± 0.1					
Embed-SMOTE	52.3 ± 0.7	53.8±0.7	72.1 ± 0.5	$62.6 {\pm} 0.5$					
$GraphSMOTE_T$	52.1±0.9	52.4 ± 0.7	$72.0 {\pm} 0.6$	60.6 ± 0.3					
GraphSMOTE _O	52.0±0.9	$52.4{\pm}0.8$	$71.9{\pm}0.6$	60.7 ± 0.5					
GraphSMOTE _{preT}	48.0 ± 2.1	48.4 ± 2.2	69.0 ± 1.5	56.8 ± 1.9					
GraphSMOTE preO	47.7±1.7	47.7 ± 1.6	68.8 ± 1.3	56.3 ± 1.5					
GraphENS	49.6±0.6	51.5 ± 0.5	$70.2 {\pm} 0.4$	62.5±0.3					
Tail-GNN	OOM	OOM	OOM	OOM					
LTE4G	54.2 ±0.7	$53.0 {\pm} 0.4$	73.4±0.5	60.9±0.5					

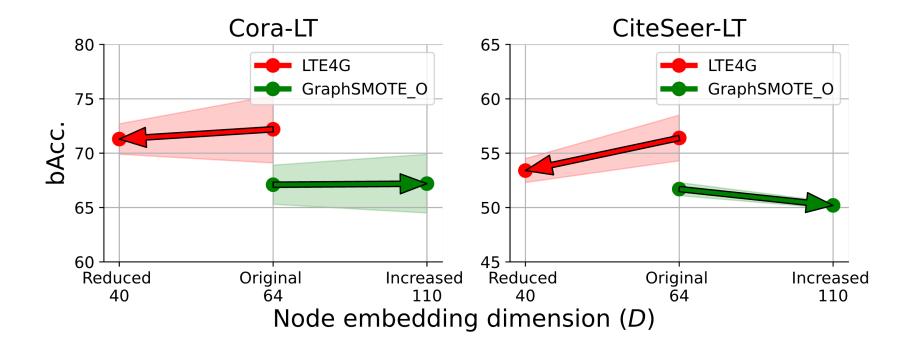
LTE4G performs well on both the manual and natural imbalanced settings

Performance on each class, degree and joint consideration

LTE4G outperforms other baselines on <u>Class Separation</u>, <u>Degree Separation</u>, and their <u>Joint Consideration</u>

Ablation of key components & Importance of Balanced Splits

Components						CiteSee	r-10% (Imb.	Class 5)	CiteSeer-5% (Imb. Class 5)			
#	С	D	KD	T2H	H2T	bAcc.	Macro-F1	G-Means	bAcc.	Macro-F1	G-Means	
(a)	\checkmark					51.5 ± 4.2	47.1 ± 4.0	68.2±3.1	43.5±0.5	38.5±1.8	62.1±0.4	
(b)		\checkmark				39.6 ± 4.6	34.7 ± 5.8	58.9 ± 3.8	29.8 ± 2.5	24.1 ± 2.4	50.6 ± 2.3	
(c)	 Image: A second s	\checkmark				45.6 ± 2.3	41.1 ± 3.2	63.7 ± 1.8	37.6±5.7	32.9 ± 5.8	57.2 ± 4.8	
(d)	\checkmark	\checkmark	\checkmark			50.7 ± 3.3	45.5 ± 2.8	67.6 ± 2.5	44.9±3.6	39.4 ± 1.5	63.2 ± 2.8	
(e)	 Image: A second s	\checkmark	\checkmark	\checkmark		50.5 ± 2.8	45.9 ± 2.0	67.4 ± 2.1	46.5 ± 3.1	41.9 ± 3.7	64.4 ± 2.3	
(f)	\checkmark	\checkmark	\checkmark		\checkmark	52.1±3.7	$47.2{\pm}3.6$	$68.6{\pm}2.7$	47.3 ± 1.1	$41.2{\pm}2.1$	65.0±0.9	


Considering both the class and degree long-tailedness with knowledge distillation scheme is effective

Balan	ced Split	Cora	-5% (Imb. C	lass 3)	CiteSeer-5% (Imb. Class 3)			
Class	Degree	bAcc. Macro-F1 G-Means		bAcc.	Macro-F1	G-Means		
×	×	51.9±3.5	44.4 ± 4.8	69.1±2.5	38.1±1.9	26.6 ± 0.5	57.7±1.5	
×	\checkmark	47.4±2.0	36.7 ± 2.2	65.8 ± 1.5	38.8±1.7	27.0 ± 1.0	58.3 ± 1.4	
\checkmark	×	69.4±2.6	68.2 ± 2.8	81.2±1.7	52.2±1.6	48.2 ± 3.1	68.7±1.2	
\checkmark	\checkmark	70.9 ±2.5	69.6 ±2.8	82.1 ±1.6	52.7 ±2.1	48.3 ±3.7	69.1 ±1.5	

The beauty of alleviating long-tailedness comes in where the both class and degree long-tailedness is jointly considered

Complexity Analysis

It is important to assign parameters in the right place where they are needed

CONCLUSION

- Existing GNNs assume balanced situation where both the class and degree distributions are balanced.
- However, in real-world scenarios, we often encounter long-tail problem (i.e., Head dominates).
- Recent Studies focused on either the class or degree long-tailedness.
- To this end, we propose LTE4G, which jointly alleviates the class and degree long-tailedness.
- Keywords for LTE4G
 - **<u>Split</u>** (in a balanced manner)
 - Experts (for joint subsets)
 - **<u>Students</u>** (in a class-wise manner)
 - <u>Class-Prototypes</u> (for inference)

SUPPLEMENTARY MATERIALS

[Full paper] https://arxiv.org/abs/2208.10205

[Code] <u>https://github.com/SukwonYun/LTE4G</u>

[Author Email] swyun@kaist.ac.kr

