

Task-guided Pair Embedding in Heterogeneous Network

<u>Chanyoung Park</u>¹, Donghyun Kim², Qi Zhu¹, Jiawei Han¹, Hwanjo Yu³

¹University of Illinois at Urbana-Champaign

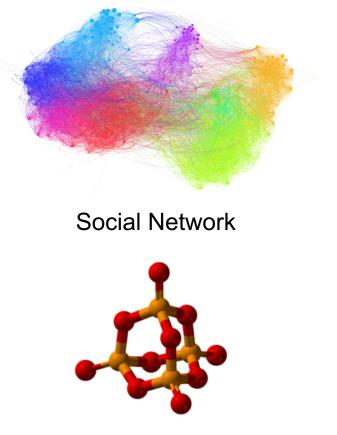
²Yahoo! Research

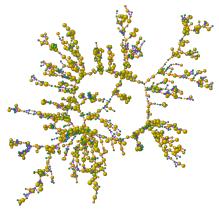
³Pohang University of Science and Technology (POSTECH)

The 28th ACM International Conference on Information and Knowledge Management (CIKM 2019)

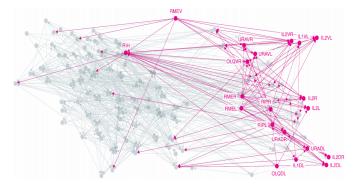
Network

- A ubiquitous data structure to model the relationships between entities
- Many types of data can be flexibly formulated as networks





Biological Network

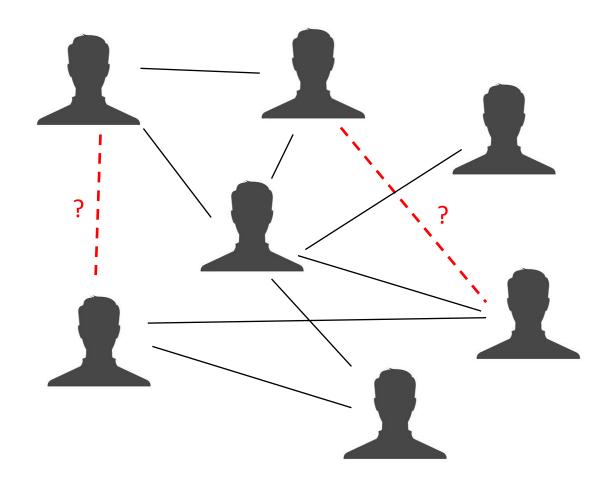


Network of neurons

Classical Tasks in Networks

- Node classification
 - Predict the type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

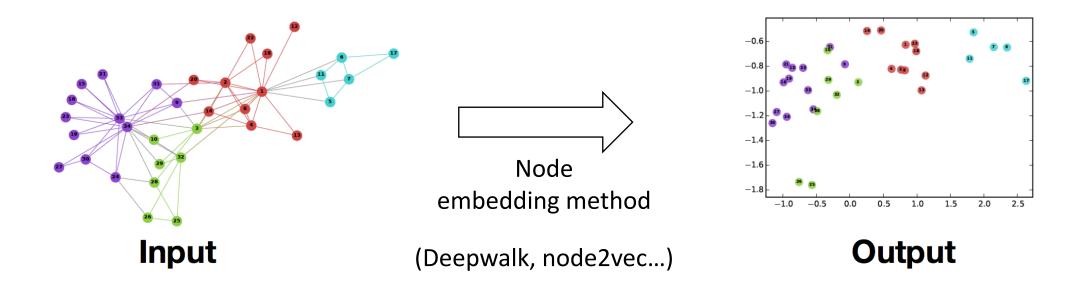
Example: Link Prediction (Friend Recommendation)



How do we solve these network-related tasks? → Node embedding-based methods

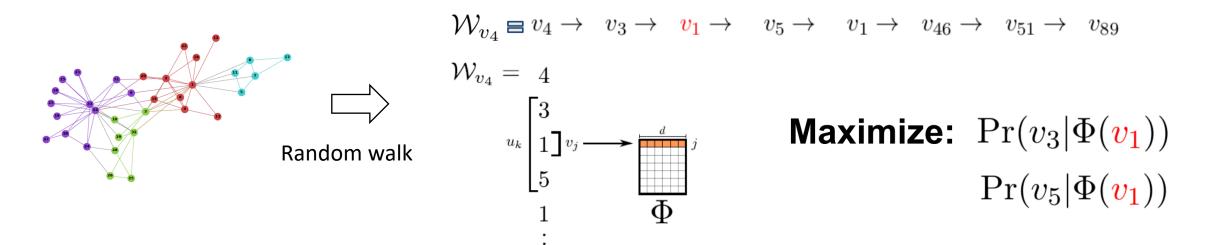
Node Embedding

- Find a low-dimensional vector representation of each node in a graph while preserving the network structure
 - Intuition: Similar nodes in a graph have similar vector representations



Related Work: Deepwalk (Perozzi et al, 2014)

- DeepWalk converts a graph into a collection of node sequences using uniform sampling (truncated random walk)
- Assuming each sequence as a sentence, they run the Skip-gram model (Mikolov et al. 2014) to learn representation for each node (like word2vec)

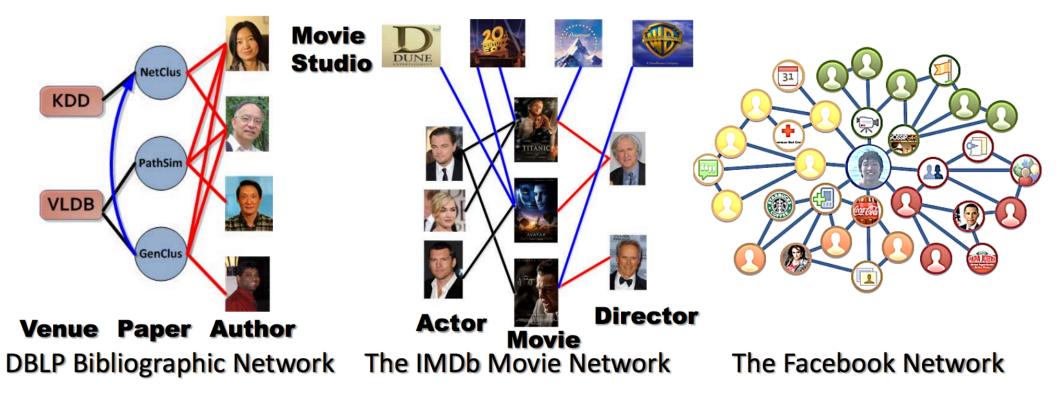


Can only be applied to a network with a single type of nodes and edges. (not to heterogeneous network)

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2014.

Heterogeneous network (HetNet)

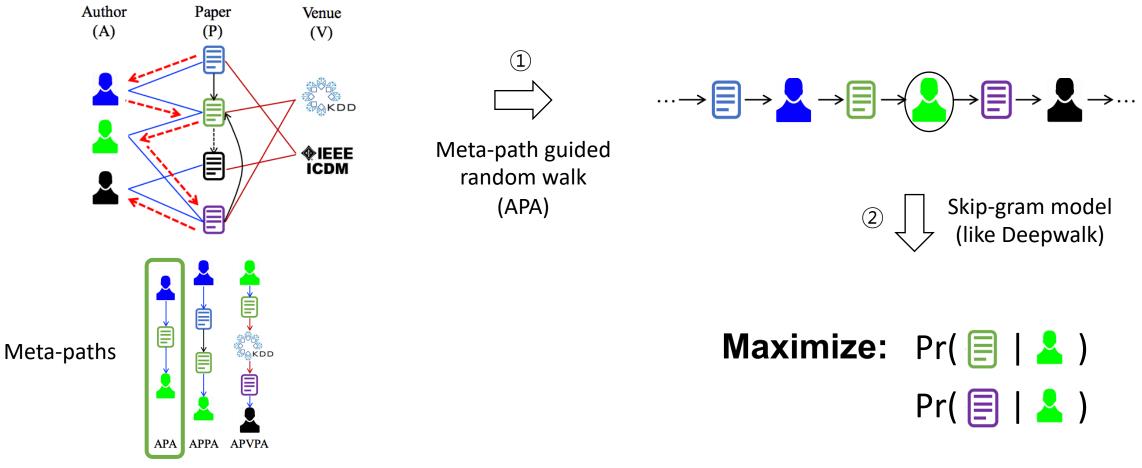
- A network with **multiple types of nodes** and **multiple types of edges**
- A lot of networks in reality are heterogeneous network



How do we embed nodes in a heterogeneous network?

Node Embedding for Heterogeneous Network: Metapath2vec (Dong et al, 2017)

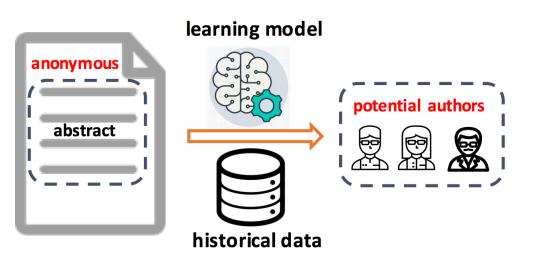
• Motivation: Deepwalk assumes that each node has a single type \rightarrow Extend Deepwalk to HetNet!

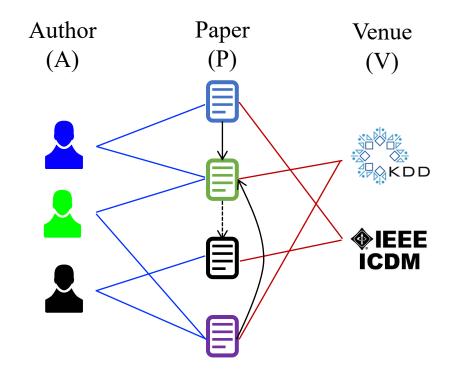


Dong, Yuxiao, Nitesh V. Chawla, and Ananthram Swami. "metapath2vec: Scalable representation learning for heterogeneous networks." *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining*. ACM, 2017.

Task-guided HetNet embedding

- Instead of learning general node embeddings, what about we focus on a specific task?
- Example: Author Identification
 - Predict the true authors of an anonymized paper given
 - Paper abstract
 - Venue (e.g., KDD, ICDM)
 - References
- Can we predict the true authors? [1,2]





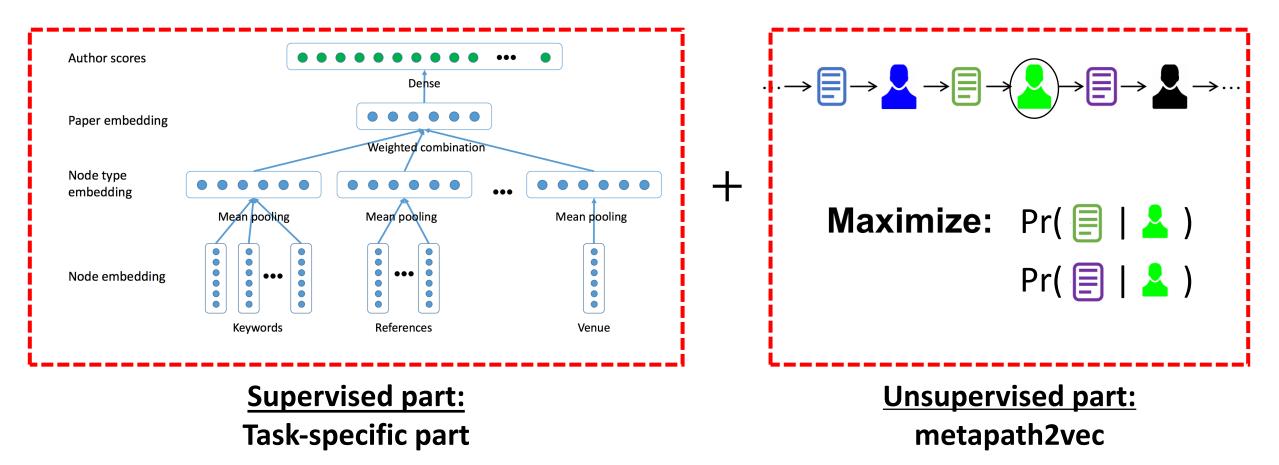
[1] Chen, Ting, and Yizhou Sun. "Task-guided and path-augmented heterogeneous network embedding for author identification." WSDM, 2017.
 [2] Zhang, Chuxu, et al. "Camel: Content-Aware and Meta-path Augmented Metric Learning for Author Identification." WWW. 2018.

Previous Research on Task-guided HetNet Embedding

[WSDM17] Task-guided and path-augmented heterogeneous network embedding for author identification

• **Step 1**: Combine keywords, venue and references related to a paper to obtain the paper embedding

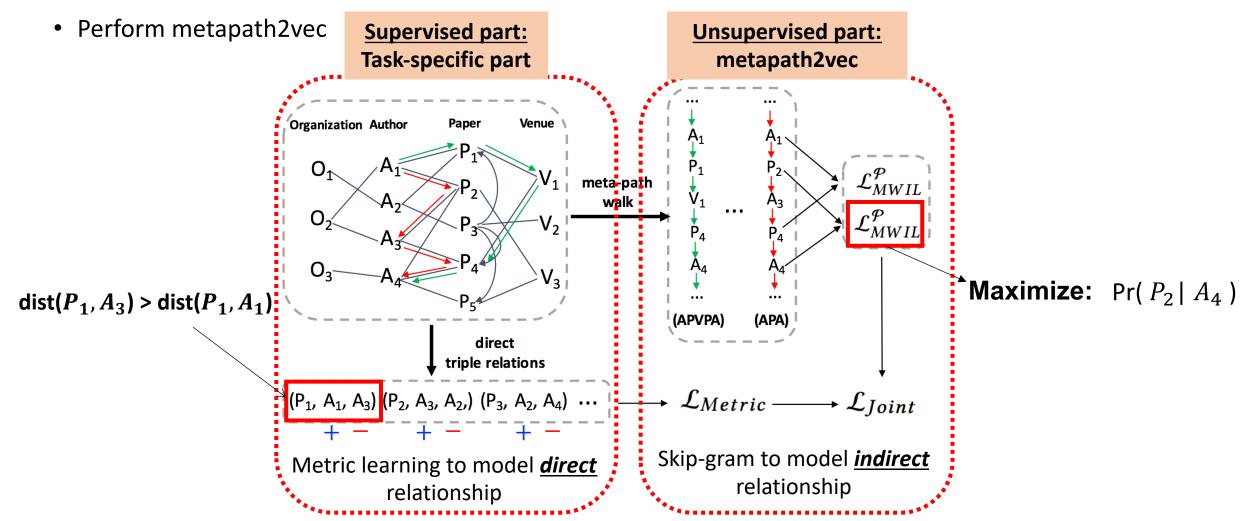
• Step 2: Perform metapath2vec using embeddings learned in step 1



Previous Research on Task-guided Embedding

[WWW18] Camel: Content-Aware and Meta-path Augmented Metric Learning for Author Identification

• Model the paper abstract using a GRU-based encoder



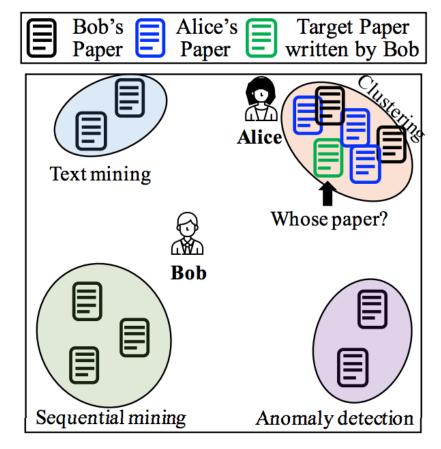
Our Motivation

- Directly modeling the <u>pairwise relationship between two nodes</u> is crucial for task-guided embedding methods
- The ultimate goal is usually to model the likelihood of the pairwise relationship
 - i.e., Link probability between two nodes
- Example
 - Recommendation
 - The goal is to model the likelihood of a user favoring an item (i.e., user-item pairwise relationship)
 - Author identification
 - The goal is to model the likelihood of a paper being written by an author (i.e., paper-author pairwise relationship)
- However, previous task-guided embedding methods are **node-centric**
 - Step 1. Learn task-guided *node embeddings*
 - Step 2. Then, simply use inner product between two node embeddings to compute the pairwise likelihood

We devise **pair embedding** to directly model the pairwise relationship

Toy example: Author identification (Node embedding)

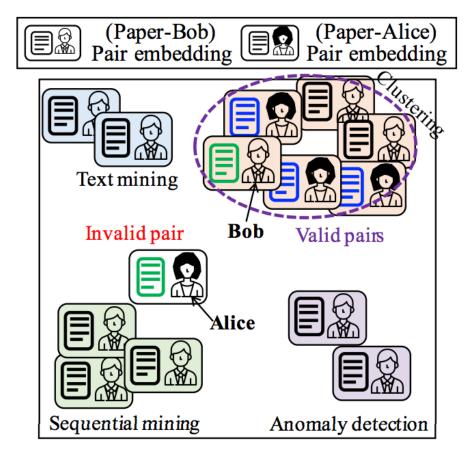
- Assumption
 - Bob has written multiple papers in various research areas
 - Alice only worked on "Clustering" topic
- Case 1) Node embedding
- Should find a single optimal point to satisfy all relationship
 - **Bob's embedding**: Should satisfy his relationship with various research areas
 - Alice's embedding: Should be close to papers whose topics are "clustering"
- **Question**: What about a new paper on "Clustering" written by Bob?
 - It will be embedded together with "Clustering" papers, and therefore close to Alice



(a) Node embedding

Our approach: Pair Embedding

- Assumption
 - Bob has written multiple papers in various research areas
 - Alice only worked on "Clustering" topic
- Case 2: Pair embedding
- Embed each paper—author pair such that each pair embedding independently captures ...
 - 1. Associated research topic
 - 2. Pair validity information
 - Whether the pair is valid or not
 - = Whether the paper is written by the author within a pair
- By doing so, we want the pairs to be embedded close to each other if both of the above two conditions hold

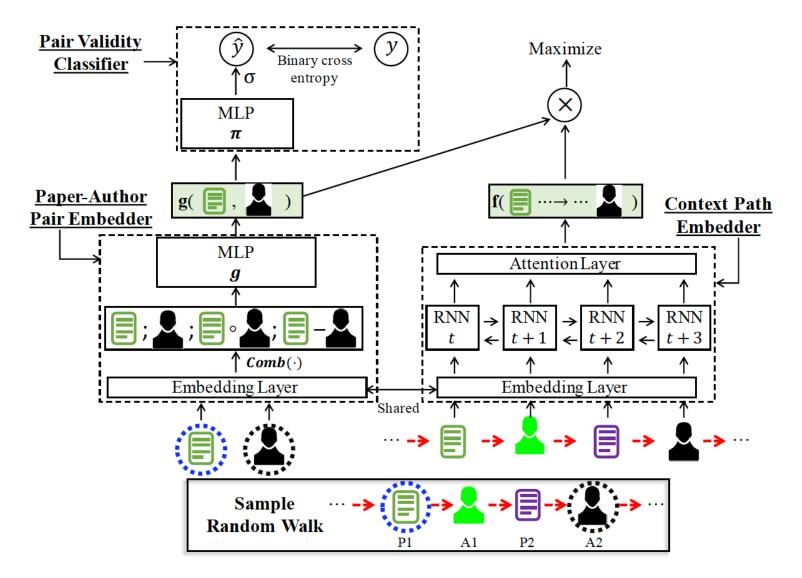


(b) Pair embedding

Summary: Our goals

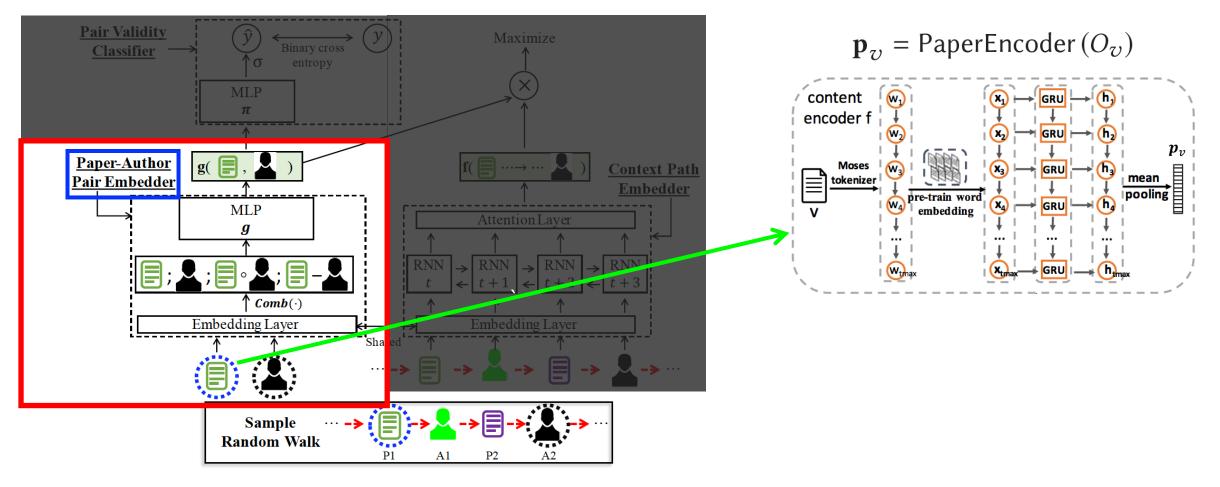
- 1. To model the **semantics** (e.g., research topic) behind the pairwise relationship
- 2. To model the **validity** of the pair regarding a specific task
 - This work: Author identification
 - Given a paper-author pair, whether the paper in the pair is written by the author in the pair

Proposed Method: TapEm Overall Architecture



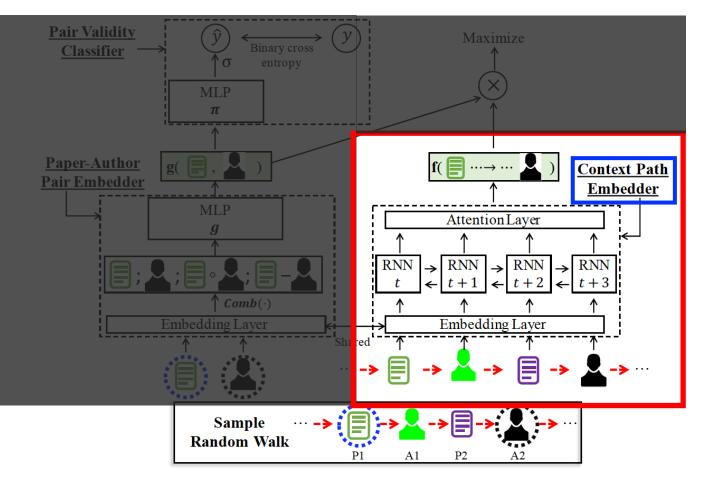
• 1) Context Path-aware Pair Embedder

• Step 1: Pair Embedder (Embedding Paper–Author Pair)



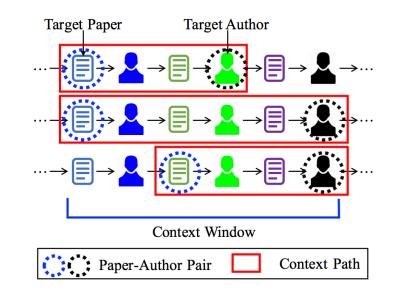
1) Context Path-aware Pair Embedder

• Step 2: Context Path Embedder (Embedding Context Path)



What is a **context path**?

A sequence of nodes between a target node pair

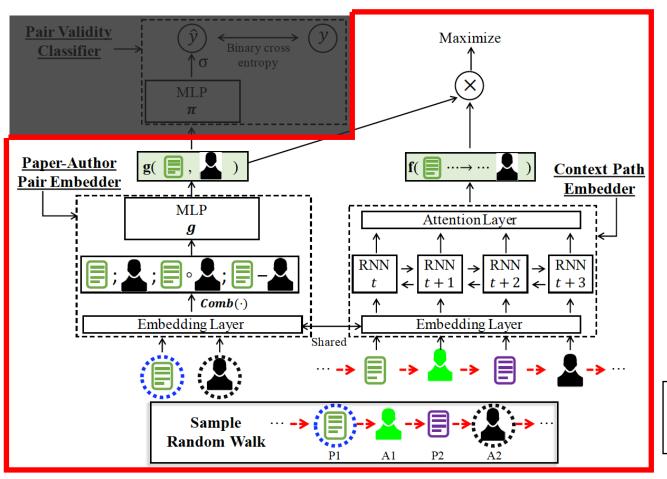


Why do we consider the **context path**?

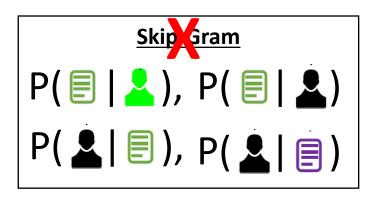
We can infer the research topic related to the pair (v, u) by examining the path between paper v and author u

1) Context Path-aware Pair Embedder

• Step 3: Injecting Context Information into Pairs



 $\frac{\text{Objective (Pair embedding)}}{\text{Predict pair using its context path}}$ $P((\bigcirc, \textcircled{a})) \bigcirc (\neg, \textcircled{a})) \bigcirc (\neg, \textcircled{a})$



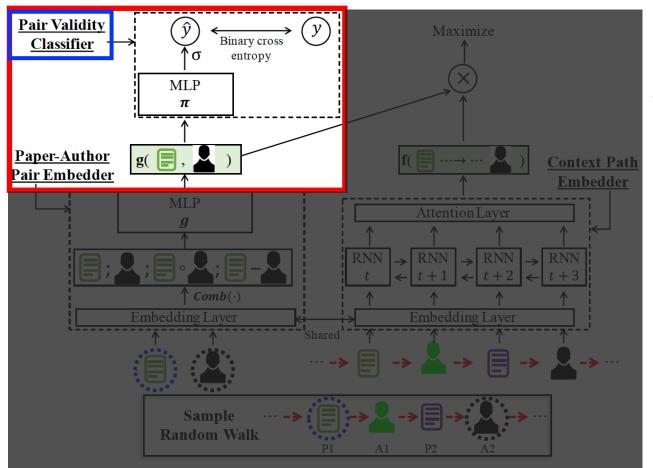
$$\mathcal{L}_{\text{ctx}}(v, u) = \sum_{c \in C_{v \to u}^{\mathcal{P}}} -\log p((v, u)|c, \mathcal{P})$$
$$p((v, u)|c, \mathcal{P}) = \frac{\exp\left[(\mathbf{g}(v, u) \cdot \mathbf{f}(c))\right]}{\sum_{c' \in C_*^{\mathcal{P}}} \exp\left[(\mathbf{g}(v, u) \cdot \mathbf{f}(c'))\right]}$$

Benefit

Pair embedding \approx Embeddings of frequent context paths

→ Pair embedding encodes its related research topic

• **2) Pair Validity Classifier** (Validity of Pair Embedding)



Objective

- Classify whether the pair is valid or not

$$\mathcal{L}_{\text{pv}}(v, u) = y_{v, u} \sigma(\boldsymbol{\pi}(\mathbf{g}(v, u))) + (1 - y_{v, u})(1 - \sigma(\boldsymbol{\pi}(\mathbf{g}(v, u))))$$

 $y_{v,u} = \begin{cases} 1, & \text{paper } v \text{ is written by author } u \\ 0, & \text{paper } v \text{ is not written by author } u \end{cases}$

Benefit

- Enables to identify relatively less active authors
 - The training of the embedding is no longer solely based on the frequency (Limitation of Skip-Gram)
- Two nodes will be embedded close to each other if
 - 1. Related to a similar research topic
 - 2. The pair itself is valid

Joint Objective

Context Path-aware Pair Embedder Pair Validity Classifier

 $\mathcal{L}_{\mathrm{ctx}}(v, u)$

 $\mathcal{L} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$ $\mathcal{P} \in \mathcal{S}(\mathcal{P}) \ \mathbf{w} \in \mathcal{W}_{\mathcal{P}} \ v \in \mathbf{w} \ u \in \mathbf{w}[C_{\tau}, -\tau:C_{\tau}, +\tau]$

- *S*(*P*): a set of meta-path scheme
- W_p : a set of random walks guided by meta-path p
- τ : window size
- C_v : position of paper v in walk w

Experiments

- Dataset: AMiner dataset
 - Extracted 10 years of data (2006 ~ 2015)
 - Removed the papers published in venues with limited publications
 - Two versions
 - AMiner-Top: Selected 18 top conferences from AI, DM, DB, IS, CV, and CL
 - AMiner-Full: All venues

Statistics	AMiner-Top	AMiner-Full
# authors	27,920	536,811
# papers	21,808	447,289
# venues	18	389

AI: ICML, AAAI, IJCAI. DM: KDD, WSDM, ICDM. DB: SIGMOD, VLDB, ICDE. IS: WWW, SIGIR, CIKM. CV: CVPR, ICCV, ECCV. CL: ACL, EMNLP, NAACL

Experiments

- Baselines
 - 1. Feature engineering-based supervised method
 - 2. General purpose heterogeneous network embedding method
 - Metapath2vec [KDD17] (Dong et al, 2017)
 - 3. Task-guided heterogeneous network embedding methods
 - HNE [WSDM17] (Chen et al, 2017)
 - Camel [WWW18] (Zhang et al, 2018)
 - + TaPEm_{npv} : TaPEm without pair validity classifier

Experiments: All authors (Active + Inactive)

Dat	aset	Metric	Sup	MPV	HNE	Camel	TaPEm _{npv}	TaPEm	Impr.		Sup	MPV	HNE	Camel	TaPEm _{npv}	TaPEm	Impr.
er-Top	T = 2013	Rec@5 Rec@10 Prec@5 Prec@10 F1@5 F1@10 AUC	0.6227 0.2285 0.1323 0.3222 0.2182	$\begin{array}{c} 0.6746 \\ 0.2148 \\ 0.1401 \\ 0.3052 \\ 0.2320 \end{array}$	$\begin{array}{c} 0.6301 \\ 0.2051 \\ 0.1334 \\ 0.2888 \\ 0.2202 \end{array}$	$\begin{array}{c} 0.7370 \\ 0.2439 \\ 0.1555 \\ 0.3452 \end{array}$	$\begin{array}{c} 0.6405\\ 0.7677\\ 0.2662\\ 0.1632\\ 0.3761\\ 0.2691\\ 0.9164 \end{array}$	0.6807 0.7849 0.2835 0.1664 0.4003 0.2746 0.9178	15.33% 6.50% 16.24% 7.01% 15.96% 6.93% 0.72%	ler-All	0.6409 0.2679 0.1418 0.3722 0.2322	$\begin{array}{c} 0.7317 \\ 0.2562 \\ 0.1595 \\ 0.3589 \\ 0.2619 \end{array}$	$\begin{array}{c} 0.6110 \\ 0.7166 \\ 0.2679 \\ 0.1590 \\ 0.3724 \\ 0.2602 \\ 0.8855 \end{array}$	$\begin{array}{c} 0.6811 \\ 0.2393 \\ 0.1508 \\ 0.3327 \\ 0.2470 \end{array}$	$\begin{array}{c} 0.7049 \\ 0.8121 \\ 0.3076 \\ 0.1795 \\ 0.4283 \\ 0.2940 \\ 0.9291 \end{array}$	0.7097 0.8237 0.3087 0.1818 0.4303 0.2978 0.9337	16.15% 12.57% 15.23% 13.98% 15.55% 13.71% 4.64%
AMin	T=2014	Rec@5 Rec@10 Prec@5 Prec@10 F1@5 F1@10 AUC	$\begin{array}{c} 0.5792 \\ 0.2508 \\ 0.1447 \\ 0.3371 \\ 0.2316 \end{array}$	$\begin{array}{c} 0.6661 \\ 0.2457 \\ 0.1636 \\ 0.3320 \\ 0.2627 \end{array}$	$\begin{array}{c} 0.6185 \\ 0.2284 \\ 0.1538 \\ 0.3066 \end{array}$	$\begin{array}{c} 0.5625\\ 0.7198\\ 0.2706\\ 0.1776\\ 0.3654\\ 0.2849\\ 0.9087 \end{array}$	$\begin{array}{c} 0.6121 \\ 0.7471 \\ 0.2962 \\ 0.1851 \\ 0.3992 \\ 0.2967 \\ 0.9112 \end{array}$	0.6577 0.7698 0.3148 0.1898 0.4258 0.3045 0.9206	16.92% 6.95% 16.33% 6.87% 16.53% 6.88% 1.31%	AMir	0.6570 0.2825 0.1510 0.3882 0.2455	$\begin{array}{c} 0.7114 \\ 0.2586 \\ 0.1623 \\ 0.3571 \end{array}$	$\begin{array}{c} 0.5842 \\ 0.6927 \\ 0.2689 \\ 0.1611 \\ 0.3683 \\ 0.2614 \\ 0.8747 \end{array}$	$\begin{array}{c} 0.6835 \\ 0.2529 \\ 0.1588 \\ 0.3464 \end{array}$	$\begin{array}{c} 0.6742 \\ 0.7952 \\ 0.3068 \\ 0.1840 \\ 0.4217 \\ 0.2989 \\ 0.9243 \end{array}$	0.6840 0.7998 0.3109 0.1850 0.4275 0.3005 0.9245	$\begin{array}{c} 10.27\% \\ 12.43\% \\ 10.05\% \\ 13.99\% \\ 10.12\% \\ 13.70\% \\ 4.65\% \end{array}$

- TaPEm >> Rest (especially when N is small)
 - TapEm captures the fine-grained pairwise relationship between two nodes
 - Pushes true authors to the top ranks
- TaPEm $_{npv}$ > Rest
 - Pair embedding framework > Skip-gram
- TapEm > TaPEm_{npv}
 - Pair validity classifier encodes pair validity information into the pair embedding

Experiments: Inactive Authors

- The skip-gram based model is **biased to active authors**
 - Most authors publish only few papers
 - 92% of authors in AMiner dataset published less than 6 publications
 - Inactive authors: Authors with less than 6 publications

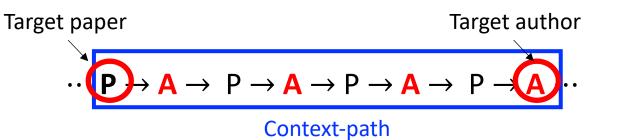
	T	Methods	N =1	Recall N =2	M = 5	N = 10 N	<i>I</i> =1	Precision $N = 2$	n@N N = 5	<i>N</i> =10	<i>N</i> =1	F1@ N=2	∂N N =5	<i>N</i> =10	AUC
dc	2013	Camel 0	0.1808 0.2677	0.3035 0.4131	0.5012 0.6037	0.6646 0.3	3155 4496	0.2734 0.3697	0.1887 0.2251	0.1244 0.1360	0.2299 0.3356	0.2877 0.3902	0.2742 0.3279	0.2096 0.2289	0.8854 0.8935
T-TC		Improve. 4	48.06%	36.11%	20.45%	8.64% 42	2.50%	35.22%	19.29%	9.32%	45.98%	35.63%	19.58%	9.21%	0.91%
AMine	2014).1624).2312	0.2739 0.3670	0.4831 0.5679		3372 4515	0.2865 0.3759	0.2094 0.2433	0.1440 0.1507	0.2192 0.3058	0.2801 0.3714	0.2922 0.3406	0.2365 0.2473	0.8909 0.8934
		Improve. 4	42.36%	33.99%	17.55%	4.25% 33	8.90%	31.20%	16.19%	4.65%	39.51%	32.60%	16.56%	4.57%	0.28%

- TapEm performs much better on inactive authors
 - Benefit of pair embedding + pair validity classifier

Experiments: Case Study

- Case studies to see how TapEm ranks active authors
 - Two author groups exist within a context path
 - 1) True authors, 2) Frequently appearing false authors
 - Case 1: True authors contain an active author

Paper: (CIKM'06) Mining compressed commodity workflows from massive RFID datasets								
	Author (num_publications)	Ra Camel	nk TaPEm					
	Jiawei Han (141)	1	8					
True authors	Hector Gonzalez (9)	198 296	1 81					
Frequently appearing false authors	Yizhou Sun (23) Jae-Gil Lee (10) John Paul Sondag (1)	94 323 1043	418 196 3650					



• Case 3: Both author groups contain an active author

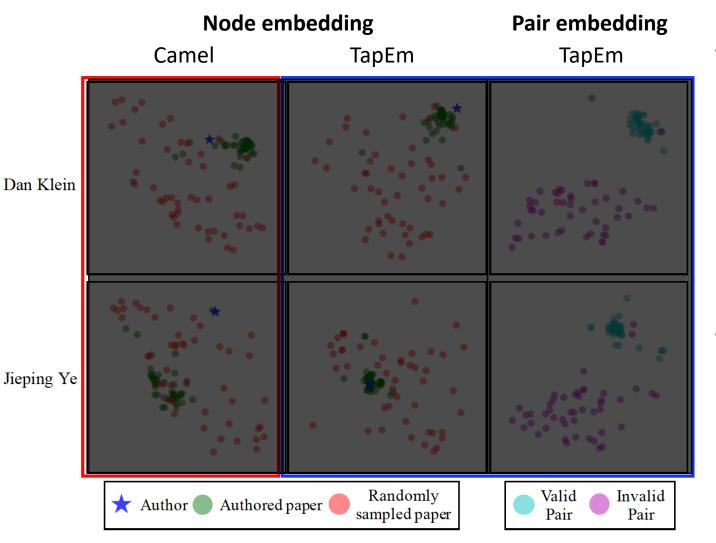
Paper: (KDD'06) Generating semantic annotations for frequent patterns with context analysis								
	Author (num publications)							
	Jiawei Han (141)	1	14					
True authors	Qiaozhu Mei (21) Dong Xin (20)	44 130	9 26					
Frequently appearing	Philip S.Yu (122)	7	41					
Frequently appearing false authors	Xifeng Yan (36) Charu C.Aggarwal (30)	15 16	19 303					

• Case 2: Frequently appearing authors contain an active author

Paper: (KDD'06) A mixture model for contextual text mining								
	Author (num. publications)	Ra Camel	nk TaPEm					
True authors	Cheng Xiang Zhai (51) Qiaozhu Mei (21)	4 24	3 4					
Frequently appearing false authors	Jiawei Han (141)	2	122					
false authors	Yintao Yu (6)	601	372					

- Camel simply ranks active authors to high ranks (due to Skip-gram)
- TapEm is robust to the activeness of authors (due to pair embedding framework)

Experiments: Visualization of the embeddings



- <u>Node embedding</u> of TapEm
 - 1. More tightly grouped together
 - 2. The author embedding is closer to the cluster of the authored papers

TaPEm generates **more accurate** embeddings for paper and author

- <u>Pair embedding</u> of TapEm
 - Makes it even easier to distinguish whether a pair is valid or not

Pair embedding is useful for task-guided heterogeneous network embedding

Conclusion

- Proposed the pair embedding framework for heterogeneous network
 - Useful for tasks whose goal is to predict the likelihood of pairwise relationship between two nodes
- Directly focused on the **pairwise relationship** between two nodes
 - Learn the **pair embedding** instead of node embedding
- The pair validity classifier is effective in **identifying less active true authors**